Automatic segmentation of white matter hyperintensities in routine clinical brain MRI by 2D VB-Net: A large-scale study

分割 高强度 计算机科学 人工智能 卷积神经网络 白质 一致性(知识库) 磁共振成像 目视检查 模式识别(心理学) 医学 放射科
作者
Wenhao Zhu,Hao Huang,Yaqi Zhou,Feng Shi,Hong Shen,Ran Chen,Rui Hua,Wei Wang,Shabei Xu,Xiang Luo
出处
期刊:Frontiers in Aging Neuroscience [Frontiers Media SA]
卷期号:14 被引量:21
标识
DOI:10.3389/fnagi.2022.915009
摘要

White matter hyperintensities (WMH) are imaging manifestations frequently observed in various neurological disorders, yet the clinical application of WMH quantification is limited. In this study, we designed a series of dedicated WMH labeling protocols and proposed a convolutional neural network named 2D VB-Net for the segmentation of WMH and other coexisting intracranial lesions based on a large dataset of 1,045 subjects across various demographics and multiple scanners using 2D thick-slice protocols that are more commonly applied in clinical practice. Using our labeling pipeline, the Dice consistency of the WMH regions manually depicted by two observers was 0.878, which formed a solid basis for the development and evaluation of the automatic segmentation system. The proposed algorithm outperformed other state-of-the-art methods (uResNet, 3D V-Net and Visual Geometry Group network) in the segmentation of WMH and other coexisting intracranial lesions and was well validated on datasets with thick-slice magnetic resonance (MR) images and the 2017 medical image computing and computer assisted intervention WMH Segmentation Challenge dataset (with thin-slice MR images), all showing excellent effectiveness. Furthermore, our method can subclassify WMH to display the WMH distributions and is very lightweight. Additionally, in terms of correlation to visual rating scores, our algorithm showed excellent consistency with the manual delineations and was overall better than those from other competing methods. In conclusion, we developed an automatic WMH quantification framework for multiple application scenarios, exhibiting a promising future in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
姜sir发布了新的文献求助10
1秒前
2秒前
4秒前
4秒前
gzw应助慕白采纳,获得10
4秒前
甜美百褶裙完成签到,获得积分20
5秒前
6秒前
6秒前
小白完成签到,获得积分10
6秒前
lzd完成签到,获得积分10
6秒前
7秒前
7秒前
慕容真发布了新的文献求助10
8秒前
欣常在完成签到 ,获得积分10
8秒前
mengli完成签到 ,获得积分10
9秒前
科研通AI2S应助听寒采纳,获得10
11秒前
曲聋五发布了新的文献求助10
11秒前
11秒前
星河发布了新的文献求助10
12秒前
12秒前
隐形曼青应助CC采纳,获得10
12秒前
洁净之柔发布了新的文献求助30
13秒前
14秒前
15秒前
123321发布了新的文献求助10
16秒前
Loki发布了新的文献求助10
16秒前
科研顺利发布了新的文献求助10
17秒前
17秒前
不会失忆完成签到,获得积分10
18秒前
阳yang完成签到,获得积分10
18秒前
19秒前
逸风望完成签到,获得积分10
22秒前
充电宝应助Loki采纳,获得10
22秒前
wxr发布了新的文献求助10
25秒前
螃蟹One完成签到 ,获得积分10
26秒前
顺顺利利完成签到,获得积分10
26秒前
传奇3应助123321采纳,获得10
26秒前
脑洞疼应助诗与采纳,获得30
27秒前
27秒前
SDM完成签到 ,获得积分10
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134917
求助须知:如何正确求助?哪些是违规求助? 2785800
关于积分的说明 7774138
捐赠科研通 2441635
什么是DOI,文献DOI怎么找? 1298038
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825