Automatic segmentation of white matter hyperintensities in routine clinical brain MRI by 2D VB-Net: A large-scale study

分割 高强度 计算机科学 人工智能 卷积神经网络 白质 一致性(知识库) 磁共振成像 目视检查 模式识别(心理学) 医学 放射科
作者
Wenhao Zhu,Hao Huang,Yaqi Zhou,Feng Shi,Hong Shen,Ran Chen,Rui Hua,Wei Wang,Shabei Xu,Xiang Luo
出处
期刊:Frontiers in Aging Neuroscience [Frontiers Media]
卷期号:14 被引量:33
标识
DOI:10.3389/fnagi.2022.915009
摘要

White matter hyperintensities (WMH) are imaging manifestations frequently observed in various neurological disorders, yet the clinical application of WMH quantification is limited. In this study, we designed a series of dedicated WMH labeling protocols and proposed a convolutional neural network named 2D VB-Net for the segmentation of WMH and other coexisting intracranial lesions based on a large dataset of 1,045 subjects across various demographics and multiple scanners using 2D thick-slice protocols that are more commonly applied in clinical practice. Using our labeling pipeline, the Dice consistency of the WMH regions manually depicted by two observers was 0.878, which formed a solid basis for the development and evaluation of the automatic segmentation system. The proposed algorithm outperformed other state-of-the-art methods (uResNet, 3D V-Net and Visual Geometry Group network) in the segmentation of WMH and other coexisting intracranial lesions and was well validated on datasets with thick-slice magnetic resonance (MR) images and the 2017 medical image computing and computer assisted intervention WMH Segmentation Challenge dataset (with thin-slice MR images), all showing excellent effectiveness. Furthermore, our method can subclassify WMH to display the WMH distributions and is very lightweight. Additionally, in terms of correlation to visual rating scores, our algorithm showed excellent consistency with the manual delineations and was overall better than those from other competing methods. In conclusion, we developed an automatic WMH quantification framework for multiple application scenarios, exhibiting a promising future in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助友好傲白采纳,获得10
刚刚
yx_cheng应助开心之王采纳,获得20
1秒前
swing发布了新的文献求助10
2秒前
Sepsp完成签到,获得积分10
2秒前
崔梦楠完成签到 ,获得积分10
3秒前
3秒前
EX完成签到 ,获得积分10
4秒前
4秒前
5秒前
慕青应助典雅的俊驰采纳,获得10
5秒前
Orange应助不忘初心采纳,获得10
6秒前
8秒前
yoyo完成签到,获得积分10
8秒前
tomorrow发布了新的文献求助10
10秒前
为SCI奋斗发布了新的文献求助10
10秒前
潘潘发布了新的文献求助10
11秒前
从不内卷发布了新的文献求助10
11秒前
czh应助a成采纳,获得10
11秒前
程南完成签到,获得积分10
13秒前
李健的小迷弟应助swing采纳,获得10
13秒前
ICU最靓的崽完成签到,获得积分10
15秒前
15秒前
猪猪hero应助杨祥朋采纳,获得10
16秒前
16秒前
斯文败类应助q792309106采纳,获得10
17秒前
quhayley应助最初的远方采纳,获得10
17秒前
星辰大海应助weske采纳,获得10
19秒前
CodeCraft应助潘潘采纳,获得10
19秒前
李健应助李昕123采纳,获得10
19秒前
19秒前
hjjjjj1完成签到,获得积分10
20秒前
斯文败类应助沉心采纳,获得10
21秒前
21秒前
21秒前
dicpaccn完成签到,获得积分10
22秒前
djejje完成签到 ,获得积分10
22秒前
ICU最靓的崽给榛糕李的求助进行了留言
23秒前
尹尹尹完成签到 ,获得积分20
23秒前
24秒前
Akim应助朱莉采纳,获得10
24秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979515
求助须知:如何正确求助?哪些是违规求助? 3523465
关于积分的说明 11217759
捐赠科研通 3260973
什么是DOI,文献DOI怎么找? 1800315
邀请新用户注册赠送积分活动 879017
科研通“疑难数据库(出版商)”最低求助积分说明 807144