Automatic segmentation of white matter hyperintensities in routine clinical brain MRI by 2D VB-Net: A large-scale study

分割 高强度 计算机科学 人工智能 卷积神经网络 白质 一致性(知识库) 磁共振成像 目视检查 模式识别(心理学) 医学 放射科
作者
Wenhao Zhu,Hao Huang,Yaqi Zhou,Feng Shi,Hong Shen,Ran Chen,Rui Hua,Wei Wang,Shabei Xu,Xiang Luo
出处
期刊:Frontiers in Aging Neuroscience [Frontiers Media]
卷期号:14 被引量:33
标识
DOI:10.3389/fnagi.2022.915009
摘要

White matter hyperintensities (WMH) are imaging manifestations frequently observed in various neurological disorders, yet the clinical application of WMH quantification is limited. In this study, we designed a series of dedicated WMH labeling protocols and proposed a convolutional neural network named 2D VB-Net for the segmentation of WMH and other coexisting intracranial lesions based on a large dataset of 1,045 subjects across various demographics and multiple scanners using 2D thick-slice protocols that are more commonly applied in clinical practice. Using our labeling pipeline, the Dice consistency of the WMH regions manually depicted by two observers was 0.878, which formed a solid basis for the development and evaluation of the automatic segmentation system. The proposed algorithm outperformed other state-of-the-art methods (uResNet, 3D V-Net and Visual Geometry Group network) in the segmentation of WMH and other coexisting intracranial lesions and was well validated on datasets with thick-slice magnetic resonance (MR) images and the 2017 medical image computing and computer assisted intervention WMH Segmentation Challenge dataset (with thin-slice MR images), all showing excellent effectiveness. Furthermore, our method can subclassify WMH to display the WMH distributions and is very lightweight. Additionally, in terms of correlation to visual rating scores, our algorithm showed excellent consistency with the manual delineations and was overall better than those from other competing methods. In conclusion, we developed an automatic WMH quantification framework for multiple application scenarios, exhibiting a promising future in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨白秋完成签到,获得积分10
刚刚
慕青应助狠毒的小龙虾采纳,获得10
刚刚
细心青烟完成签到,获得积分20
刚刚
山中蠢驴发布了新的文献求助10
刚刚
1秒前
jeeya完成签到,获得积分10
2秒前
JamesPei应助游海艳采纳,获得10
2秒前
3秒前
songjin完成签到,获得积分10
4秒前
打打应助麦芒拾音柴采纳,获得10
4秒前
笑点低之桃完成签到,获得积分10
5秒前
木子完成签到 ,获得积分10
5秒前
5秒前
寻风完成签到,获得积分10
6秒前
柑橘涩子完成签到,获得积分10
8秒前
万能图书馆应助Sean采纳,获得10
8秒前
suwan完成签到,获得积分10
8秒前
8秒前
xiong xiong发布了新的文献求助10
8秒前
雨醉东风完成签到,获得积分10
8秒前
忽晚完成签到 ,获得积分10
9秒前
9秒前
在水一方应助滚筒洗衣机采纳,获得30
10秒前
nino应助陈亮采纳,获得10
11秒前
11秒前
12秒前
12秒前
max发布了新的文献求助10
12秒前
单薄的秋双完成签到,获得积分10
12秒前
13秒前
13秒前
狠毒的小龙虾完成签到,获得积分10
13秒前
Huangmeihao发布了新的文献求助10
13秒前
麦芒拾音柴完成签到,获得积分10
14秒前
苗条馒头完成签到,获得积分10
14秒前
15秒前
科研通AI5应助AA采纳,获得50
15秒前
珊瑚海123发布了新的文献求助10
16秒前
17秒前
不知道发布了新的文献求助10
17秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736892
求助须知:如何正确求助?哪些是违规求助? 3280826
关于积分的说明 10021216
捐赠科研通 2997475
什么是DOI,文献DOI怎么找? 1644637
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749705