Rewetting global wetlands effectively reduces major greenhouse gas emissions

湿地 温室气体 环境科学 辐射压力 甲烷 地下水位 气候变化 水文学(农业) 全球变暖 环境工程 生态学 地下水 地质学 生物 岩土工程
作者
Junyu Zou,Alan D. Ziegler,Deliang Chen,Gavin McNicol,Philippe Ciais,Xin Jiang,Chunmiao Zheng,Jie Wu,Jin Wu,Ziyu Lin,Xinyue He,Lee E. Brown,Joseph Holden,Zuotai Zhang,Sorain J. Ramchunder,Anping Chen,Zhenzhong Zeng
出处
期刊:Nature Geoscience [Springer Nature]
卷期号:15 (8): 627-632 被引量:145
标识
DOI:10.1038/s41561-022-00989-0
摘要

Carbon and nitrogen losses from degraded wetlands and methane emissions from flooded wetlands are both important sources of greenhouse gas emissions. However, the net-exchange dependence on hydrothermal conditions and wetland integrity remains unclear. Using a global-scale in situ database on net greenhouse gas exchanges, we show diverse hydrology-influenced emission patterns in CO2, CH4 and N2O. We find that total CO2-equivalent emissions from wetlands are kept to a minimum when the water table is near the surface. By contrast, greenhouse gas exchange rates peak in flooded and drained conditions. By extrapolating the current trajectory of degradation, we estimate that between 2021 and 2100, wetlands could result in greenhouse gas emissions equivalent to around 408 gigatons of CO2. However, rewetting wetlands could reduce these emissions such that the radiative forcing caused by CH4 and N2O is fully compensated by CO2 uptake. As wetland greenhouse gas budgets are highly sensitive to changes in wetland area, the resulting impact on climate from wetlands will depend on the balance between future degradation and restoration. Global in situ observations show greenhouse gas emissions from wetlands are lowest when the water table is near the surface, and therefore rewetting wetlands could substantially reduce future emissions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
无私的傲白完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
科研通AI6应助巨大的小侠采纳,获得10
3秒前
烟花应助甜甜如之采纳,获得10
3秒前
缥缈橘子完成签到,获得积分10
3秒前
4秒前
汉堡包应助明帅采纳,获得10
4秒前
Jimmy发布了新的文献求助10
4秒前
科研通AI6应助兴兴采纳,获得10
4秒前
桐桐应助李金玉采纳,获得10
4秒前
黑米粥发布了新的文献求助10
4秒前
橙鲸鱼完成签到,获得积分10
5秒前
大方万仇发布了新的文献求助10
5秒前
Ulrica发布了新的文献求助30
7秒前
sunny发布了新的文献求助10
7秒前
嘀嘀嘀完成签到,获得积分10
7秒前
小刘医生发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
9秒前
9秒前
10秒前
lxr完成签到 ,获得积分10
10秒前
10秒前
打打应助赵浩楠采纳,获得10
10秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
xiaoming完成签到 ,获得积分10
12秒前
13秒前
UMA发布了新的文献求助10
13秒前
红红酱发布了新的文献求助10
13秒前
Imomo发布了新的文献求助50
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469432
求助须知:如何正确求助?哪些是违规求助? 4572532
关于积分的说明 14336014
捐赠科研通 4499397
什么是DOI,文献DOI怎么找? 2465032
邀请新用户注册赠送积分活动 1453564
关于科研通互助平台的介绍 1428091