Automatic abdominal segmentation using novel 3D self-adjustable organ aware deep network in CT images

分割 计算机科学 人工智能 特征(语言学) 计算机视觉 模式识别(心理学) 图像分割 语言学 哲学
作者
Laquan Li,Haiguo Zhao,Hong Wang,Weisheng Li,Shenhai Zheng
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:84: 104691-104691 被引量:4
标识
DOI:10.1016/j.bspc.2023.104691
摘要

CT scan is an important reference means of disease diagnosis in practice. Automatic segmentation of organ regions can save a lot of time and labor costs, and allow doctors to produce more intuitive observations of the organization of the human body. However, automatic multi-organ segmentation in CT images remains challenging due to the complicated anatomical structures and low tissue contrast in CT images. Traditional segmentation methods are relatively inefficient for organ segmentation with large abdominal deformation, small volume, and blurry tissue boundaries, and the traditional network architectures are rarely designed to meet the requirements of lightweight and efficient clinical practice. In this paper, we propose a novel segmentation network named Self-Adjustable Organ Attention U-Net (SOA-Net) to overcome these limitations. To be a pragmatic solution for effective segmentation method, the SOA-Net includes multi-branches feature attention (MBFA) module and the feature attention aggregation (FAA) module. These two modules have multiple branches with different kernel sizes to capture different scales feature information based on multiple scales of the target organs. An adjustable attention is used on these branches to generate different sizes of the receptive fields in the fusion layer. On the whole, SOA-Net is a 3D self-adjustable organ aware deep network which can adaptively adjust their attention and receptive field sizes based on multiple scales of the target organs to realize the efficient segmentation of multiple abdominal organs. We evaluate our method on AbdomenCT-1K and AMOS2022 datasets and the final experiments proved that our model achieves the best segmentation performance compared with the state-of-the-art segmentation networks. (Our code will be publicly available soon).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助乐生采纳,获得10
刚刚
niuma发布了新的文献求助10
1秒前
Johnpick发布了新的文献求助10
1秒前
怡然的幻灵完成签到,获得积分10
2秒前
2秒前
zyq应助天际采纳,获得10
2秒前
小里发布了新的文献求助10
2秒前
2秒前
李爱国应助看看采纳,获得10
2秒前
3秒前
科研通AI5应助开朗孤兰采纳,获得10
3秒前
3秒前
慕青应助开放芷天采纳,获得10
4秒前
4秒前
5秒前
6秒前
hexiao发布了新的文献求助10
6秒前
微笑的寒梦完成签到,获得积分10
6秒前
Owen应助马慧慧采纳,获得10
6秒前
852应助钢笔采纳,获得10
6秒前
7秒前
8秒前
Tyj完成签到,获得积分10
8秒前
gg2002发布了新的文献求助10
8秒前
9秒前
郭翔完成签到,获得积分10
9秒前
动听的代曼完成签到,获得积分10
10秒前
谦让的萤发布了新的文献求助80
11秒前
11秒前
平常的毛豆应助光亮的莺采纳,获得10
11秒前
11秒前
12秒前
有点小is完成签到 ,获得积分10
12秒前
12秒前
啊是是是完成签到,获得积分10
12秒前
12秒前
打打应助111采纳,获得10
13秒前
渣渣慧发布了新的文献求助10
13秒前
自由香魔发布了新的文献求助10
13秒前
14秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842381
求助须知:如何正确求助?哪些是违规求助? 3384462
关于积分的说明 10535313
捐赠科研通 3104995
什么是DOI,文献DOI怎么找? 1709939
邀请新用户注册赠送积分活动 823416
科研通“疑难数据库(出版商)”最低求助积分说明 774059