清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Automatic abdominal segmentation using novel 3D self-adjustable organ aware deep network in CT images

分割 计算机科学 人工智能 特征(语言学) 计算机视觉 模式识别(心理学) 图像分割 语言学 哲学
作者
Laquan Li,Haiguo Zhao,Hong Wang,Weisheng Li,Shenhai Zheng
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:84: 104691-104691 被引量:8
标识
DOI:10.1016/j.bspc.2023.104691
摘要

CT scan is an important reference means of disease diagnosis in practice. Automatic segmentation of organ regions can save a lot of time and labor costs, and allow doctors to produce more intuitive observations of the organization of the human body. However, automatic multi-organ segmentation in CT images remains challenging due to the complicated anatomical structures and low tissue contrast in CT images. Traditional segmentation methods are relatively inefficient for organ segmentation with large abdominal deformation, small volume, and blurry tissue boundaries, and the traditional network architectures are rarely designed to meet the requirements of lightweight and efficient clinical practice. In this paper, we propose a novel segmentation network named Self-Adjustable Organ Attention U-Net (SOA-Net) to overcome these limitations. To be a pragmatic solution for effective segmentation method, the SOA-Net includes multi-branches feature attention (MBFA) module and the feature attention aggregation (FAA) module. These two modules have multiple branches with different kernel sizes to capture different scales feature information based on multiple scales of the target organs. An adjustable attention is used on these branches to generate different sizes of the receptive fields in the fusion layer. On the whole, SOA-Net is a 3D self-adjustable organ aware deep network which can adaptively adjust their attention and receptive field sizes based on multiple scales of the target organs to realize the efficient segmentation of multiple abdominal organs. We evaluate our method on AbdomenCT-1K and AMOS2022 datasets and the final experiments proved that our model achieves the best segmentation performance compared with the state-of-the-art segmentation networks. (Our code will be publicly available soon).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
随缘来一个吧完成签到 ,获得积分10
5秒前
Science完成签到,获得积分10
7秒前
10秒前
贼吖完成签到 ,获得积分10
12秒前
23秒前
49秒前
那那发布了新的文献求助10
54秒前
59秒前
1分钟前
1分钟前
1分钟前
1分钟前
andrewyu完成签到,获得积分10
1分钟前
sll完成签到 ,获得积分10
1分钟前
fufufu123完成签到 ,获得积分10
1分钟前
柒月完成签到,获得积分10
2分钟前
喻初原完成签到 ,获得积分10
2分钟前
Wang完成签到 ,获得积分20
2分钟前
2分钟前
2分钟前
月军完成签到,获得积分10
2分钟前
闪闪白柏发布了新的文献求助10
2分钟前
闪闪白柏完成签到,获得积分10
2分钟前
闪闪白柏关注了科研通微信公众号
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
5分钟前
5分钟前
5分钟前
5分钟前
6分钟前
6分钟前
6分钟前
白华苍松发布了新的文献求助10
6分钟前
wrl2023发布了新的文献求助10
6分钟前
6分钟前
6分钟前
雪山飞龙完成签到,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534481
求助须知:如何正确求助?哪些是违规求助? 4622551
关于积分的说明 14582640
捐赠科研通 4562673
什么是DOI,文献DOI怎么找? 2500297
邀请新用户注册赠送积分活动 1479832
关于科研通互助平台的介绍 1451027