Evaluation of Risk of Bias in Neuroimaging-Based Artificial Intelligence Models for Psychiatric Diagnosis

神经影像学 检查表 系统回顾 数据提取 批判性评价 荟萃分析 人工智能 梅德林 医学 精神科 心理学 临床心理学 机器学习 计算机科学 病理 替代医学 法学 认知心理学 政治学
作者
Zhiyi Chen,Xuerong Liu,Qingwu Yang,Yan‐Jiang Wang,Kuan Miao,Zheng Gong,Yang Yu,Artemiy Leonov,Chunlei Liu,Zhengzhi Feng,Hu Chuan-Peng
出处
期刊:JAMA network open [American Medical Association]
卷期号:6 (3): e231671-e231671 被引量:16
标识
DOI:10.1001/jamanetworkopen.2023.1671
摘要

Importance Neuroimaging-based artificial intelligence (AI) diagnostic models have proliferated in psychiatry. However, their clinical applicability and reporting quality (ie, feasibility) for clinical practice have not been systematically evaluated. Objective To systematically assess the risk of bias (ROB) and reporting quality of neuroimaging-based AI models for psychiatric diagnosis. Evidence Review PubMed was searched for peer-reviewed, full-length articles published between January 1, 1990, and March 16, 2022. Studies aimed at developing or validating neuroimaging-based AI models for clinical diagnosis of psychiatric disorders were included. Reference lists were further searched for suitable original studies. Data extraction followed the CHARMS (Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modeling Studies) and PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) guidelines. A closed-loop cross-sequential design was used for quality control. The PROBAST (Prediction Model Risk of Bias Assessment Tool) and modified CLEAR (Checklist for Evaluation of Image-Based Artificial Intelligence Reports) benchmarks were used to systematically evaluate ROB and reporting quality. Findings A total of 517 studies presenting 555 AI models were included and evaluated. Of these models, 461 (83.1%; 95% CI, 80.0%-86.2%) were rated as having a high overall ROB based on the PROBAST. The ROB was particular high in the analysis domain, including inadequate sample size (398 of 555 models [71.7%; 95% CI, 68.0%-75.6%]), poor model performance examination (with 100% of models lacking calibration examination), and lack of handling data complexity (550 of 555 models [99.1%; 95% CI, 98.3%-99.9%]). None of the AI models was perceived to be applicable to clinical practices. Overall reporting completeness (ie, number of reported items/number of total items) for the AI models was 61.2% (95% CI, 60.6%-61.8%), and the completeness was poorest for the technical assessment domain with 39.9% (95% CI, 38.8%-41.1%). Conclusions and Relevance This systematic review found that the clinical applicability and feasibility of neuroimaging-based AI models for psychiatric diagnosis were challenged by a high ROB and poor reporting quality. Particularly in the analysis domain, ROB in AI diagnostic models should be addressed before clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黑面包发布了新的文献求助10
刚刚
江幻天完成签到,获得积分10
刚刚
乐观海云完成签到 ,获得积分10
3秒前
珂珂完成签到 ,获得积分10
10秒前
roundtree完成签到 ,获得积分0
11秒前
是我呀小夏完成签到 ,获得积分10
12秒前
谦让成协完成签到,获得积分10
12秒前
wBw完成签到,获得积分10
13秒前
善良的火完成签到 ,获得积分10
16秒前
王王完成签到 ,获得积分10
19秒前
dreamode完成签到,获得积分10
21秒前
kingfly2010完成签到,获得积分10
27秒前
wp4455777完成签到,获得积分10
30秒前
科研通AI5应助林好人采纳,获得10
34秒前
科研螺丝完成签到 ,获得积分10
35秒前
宇文雨文完成签到 ,获得积分10
37秒前
accept完成签到 ,获得积分10
39秒前
会发芽完成签到 ,获得积分10
41秒前
君君完成签到,获得积分10
41秒前
大脸猫完成签到 ,获得积分10
45秒前
47秒前
鲲鹏戏龙完成签到,获得积分10
48秒前
江三村完成签到 ,获得积分10
50秒前
林好人发布了新的文献求助10
53秒前
韧迹完成签到 ,获得积分10
57秒前
华理附院孙文博完成签到 ,获得积分10
1分钟前
活泼新儿完成签到 ,获得积分10
1分钟前
091完成签到 ,获得积分10
1分钟前
1分钟前
zjky6r发布了新的文献求助10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
执念完成签到 ,获得积分10
1分钟前
培培完成签到 ,获得积分10
1分钟前
淡如菊发布了新的文献求助10
1分钟前
jiadison完成签到 ,获得积分20
1分钟前
wenhuanwenxian完成签到 ,获得积分10
1分钟前
无幻完成签到 ,获得积分10
1分钟前
jintian完成签到 ,获得积分10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555826
求助须知:如何正确求助?哪些是违规求助? 3131451
关于积分的说明 9391158
捐赠科研通 2831132
什么是DOI,文献DOI怎么找? 1556396
邀请新用户注册赠送积分活动 726516
科研通“疑难数据库(出版商)”最低求助积分说明 715890