清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multimodal sentiment system and method based on CRNN-SVM

情绪分析 计算机科学 支持向量机 人工智能 光学(聚焦) 计算科学与工程 卷积神经网络 机器学习 边距(机器学习) 语音识别 物理 光学
作者
Yan‐Gang Zhao,Mahpirat Mamat,Alimjan Aysa,Kurban Ubul
出处
期刊:Neural Computing and Applications [Springer Science+Business Media]
被引量:1
标识
DOI:10.1007/s00521-023-08366-7
摘要

Abstract Traditional sentiment analysis focuses on text-level sentiment mining, transforming sentiment mining into classification or regression problems, resulting in a sentiment analysis low accuracy rate. Sentiment analysis refers to the use of natural language processing, text analysis, and computational linguistics to systematically identify, extract, quantify, and study sentimental states. Therefore, more scholars have begun to focus on speech recognition and facial expression recognition research, and extracting and analysing people’s sentiment tendencies can improve sentiment recognition accuracy. Traditional single-modal sentiment analysis can no longer meet people’s needs. Therefore, this paper proposes a multimodal sentiment analysis method based on the multimodal sentiment analysis method that can obtain more sentimental information sources and help people make better decisions. The experimental results in this paper show that the highest recognition rates of CNN-SVM, RNN-SVM, and CRNN-SVM were 76.8%, 71.2%, and 93.5%, respectively. It can be seen that CRNN-SVM has the highest sentiment tendency recognition rate in deep learning, so it is suitable to apply CRNN-SVM to sentiment tendency analysis system design in this paper. The average accuracy rate of the system designed in this paper was 91%, and the stability was also very strong, which shows that the system designed in this paper is meaningful. The main contribution of this paper is based on the limitations of single-mode emotion analysis. It proposes a multimode emotion analysis method and introduces a convolutional neural network to help people obtain more emotional information sources to meet their needs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
5秒前
9秒前
22秒前
量子星尘发布了新的文献求助10
25秒前
香蕉觅云应助烟消云散采纳,获得10
26秒前
37秒前
量子星尘发布了新的文献求助10
39秒前
量子星尘发布了新的文献求助10
55秒前
专一的白萱完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
舒心豪英发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
科研通AI5应助hihi采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Manzia完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
back you up应助Polymer72采纳,获得200
1分钟前
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
失眠店员发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
hihi发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
楚楚完成签到 ,获得积分10
2分钟前
失眠店员发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661074
求助须知:如何正确求助?哪些是违规求助? 3222214
关于积分的说明 9744064
捐赠科研通 2931862
什么是DOI,文献DOI怎么找? 1605234
邀请新用户注册赠送积分活动 757780
科研通“疑难数据库(出版商)”最低求助积分说明 734538