Multimodal sentiment system and method based on CRNN-SVM

情绪分析 计算机科学 支持向量机 人工智能 光学(聚焦) 计算科学与工程 卷积神经网络 机器学习 边距(机器学习) 语音识别 物理 光学
作者
Yan‐Gang Zhao,Mahpirat Mamat,Alimjan Aysa,Kurban Ubul
出处
期刊:Neural Computing and Applications [Springer Science+Business Media]
被引量:1
标识
DOI:10.1007/s00521-023-08366-7
摘要

Abstract Traditional sentiment analysis focuses on text-level sentiment mining, transforming sentiment mining into classification or regression problems, resulting in a sentiment analysis low accuracy rate. Sentiment analysis refers to the use of natural language processing, text analysis, and computational linguistics to systematically identify, extract, quantify, and study sentimental states. Therefore, more scholars have begun to focus on speech recognition and facial expression recognition research, and extracting and analysing people’s sentiment tendencies can improve sentiment recognition accuracy. Traditional single-modal sentiment analysis can no longer meet people’s needs. Therefore, this paper proposes a multimodal sentiment analysis method based on the multimodal sentiment analysis method that can obtain more sentimental information sources and help people make better decisions. The experimental results in this paper show that the highest recognition rates of CNN-SVM, RNN-SVM, and CRNN-SVM were 76.8%, 71.2%, and 93.5%, respectively. It can be seen that CRNN-SVM has the highest sentiment tendency recognition rate in deep learning, so it is suitable to apply CRNN-SVM to sentiment tendency analysis system design in this paper. The average accuracy rate of the system designed in this paper was 91%, and the stability was also very strong, which shows that the system designed in this paper is meaningful. The main contribution of this paper is based on the limitations of single-mode emotion analysis. It proposes a multimode emotion analysis method and introduces a convolutional neural network to help people obtain more emotional information sources to meet their needs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
段一帆发布了新的文献求助30
1秒前
wangqinlei完成签到 ,获得积分10
1秒前
fenghp发布了新的文献求助10
2秒前
王馨雨发布了新的文献求助10
2秒前
4秒前
CipherSage应助ccalvintan采纳,获得10
5秒前
5秒前
雪天的阳完成签到 ,获得积分10
7秒前
8秒前
9秒前
9秒前
烟花应助ren采纳,获得10
10秒前
讨厌科研发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
苏卿应助科研通管家采纳,获得30
12秒前
fd163c应助科研通管家采纳,获得10
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
思源应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
13秒前
CAOHOU应助科研通管家采纳,获得10
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得30
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
13秒前
殷勤的紫槐完成签到,获得积分10
13秒前
风轻青柠发布了新的文献求助10
14秒前
14秒前
机智冬灵完成签到,获得积分10
15秒前
16秒前
为小嗳打伞完成签到 ,获得积分10
18秒前
小木安华发布了新的文献求助10
18秒前
体贴的之卉完成签到,获得积分20
20秒前
大侠完成签到 ,获得积分10
20秒前
spy777应助机智冬灵采纳,获得20
21秒前
晨曦发布了新的文献求助10
21秒前
23秒前
ChatGPT发布了新的文献求助10
24秒前
sc发布了新的文献求助10
28秒前
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989390
求助须知:如何正确求助?哪些是违规求助? 3531487
关于积分的说明 11254109
捐赠科研通 3270153
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809174