Multimodal sentiment system and method based on CRNN-SVM

情绪分析 计算机科学 支持向量机 人工智能 光学(聚焦) 计算科学与工程 卷积神经网络 机器学习 边距(机器学习) 语音识别 物理 光学
作者
Yan‐Gang Zhao,Mahpirat Mamat,Alimjan Aysa,Kurban Ubul
出处
期刊:Neural Computing and Applications [Springer Science+Business Media]
被引量:1
标识
DOI:10.1007/s00521-023-08366-7
摘要

Abstract Traditional sentiment analysis focuses on text-level sentiment mining, transforming sentiment mining into classification or regression problems, resulting in a sentiment analysis low accuracy rate. Sentiment analysis refers to the use of natural language processing, text analysis, and computational linguistics to systematically identify, extract, quantify, and study sentimental states. Therefore, more scholars have begun to focus on speech recognition and facial expression recognition research, and extracting and analysing people’s sentiment tendencies can improve sentiment recognition accuracy. Traditional single-modal sentiment analysis can no longer meet people’s needs. Therefore, this paper proposes a multimodal sentiment analysis method based on the multimodal sentiment analysis method that can obtain more sentimental information sources and help people make better decisions. The experimental results in this paper show that the highest recognition rates of CNN-SVM, RNN-SVM, and CRNN-SVM were 76.8%, 71.2%, and 93.5%, respectively. It can be seen that CRNN-SVM has the highest sentiment tendency recognition rate in deep learning, so it is suitable to apply CRNN-SVM to sentiment tendency analysis system design in this paper. The average accuracy rate of the system designed in this paper was 91%, and the stability was also very strong, which shows that the system designed in this paper is meaningful. The main contribution of this paper is based on the limitations of single-mode emotion analysis. It proposes a multimode emotion analysis method and introduces a convolutional neural network to help people obtain more emotional information sources to meet their needs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ZIVON完成签到,获得积分10
2秒前
YEEze发布了新的文献求助10
2秒前
泥泞完成签到 ,获得积分10
3秒前
3秒前
lmkpx完成签到,获得积分10
3秒前
nan应助scijrwhite采纳,获得10
3秒前
szw完成签到,获得积分10
3秒前
MINGHUI发布了新的文献求助10
4秒前
犹豫钥匙完成签到,获得积分10
5秒前
6秒前
iehaoang完成签到 ,获得积分10
6秒前
YSL发布了新的文献求助10
7秒前
penguo应助清沧炽魂采纳,获得10
8秒前
地学韦丰吉司长完成签到,获得积分10
8秒前
Akim应助热心白枫采纳,获得10
8秒前
cyyyyyyyyyy完成签到,获得积分10
9秒前
大美女完成签到,获得积分10
10秒前
hj完成签到,获得积分10
11秒前
QIUQIU0916完成签到 ,获得积分10
12秒前
12秒前
可靠代丝完成签到,获得积分10
12秒前
Hello应助YEEze采纳,获得10
12秒前
中岛悠斗完成签到,获得积分10
13秒前
犹豫钥匙发布了新的文献求助10
13秒前
今后应助YSL采纳,获得10
13秒前
hui完成签到,获得积分10
14秒前
土土完成签到,获得积分10
15秒前
俭朴夜雪完成签到,获得积分10
15秒前
柏林寒冬应助hj采纳,获得10
16秒前
打打应助默默的天德采纳,获得10
16秒前
JSEILWQ完成签到 ,获得积分10
17秒前
给你寄春天完成签到 ,获得积分10
17秒前
lxh完成签到 ,获得积分10
18秒前
潇洒的诗桃完成签到,获得积分0
19秒前
Arrhenius完成签到,获得积分10
19秒前
羊村冉大王关注了科研通微信公众号
19秒前
20秒前
雨香完成签到,获得积分10
20秒前
xiao完成签到 ,获得积分10
21秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5213267
求助须知:如何正确求助?哪些是违规求助? 4389144
关于积分的说明 13666133
捐赠科研通 4250090
什么是DOI,文献DOI怎么找? 2331905
邀请新用户注册赠送积分活动 1329586
关于科研通互助平台的介绍 1283167