已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The relative roles of different land-use types in bike-sharing demand: A machine learning-based multiple interpolation fusion method

克里金 计算机科学 插值(计算机图形学) 人工智能 机器学习 土地利用 数据挖掘 工程类 运动(物理) 土木工程
作者
Chao Sun,Jian Lü
出处
期刊:Information Fusion [Elsevier]
卷期号:95: 384-400 被引量:11
标识
DOI:10.1016/j.inffus.2023.02.033
摘要

Land use plays a crucial role in promoting the bike-sharing demand. Traditionally, studies on bike-sharing demand (BSD) are mainly focused on its prediction through regression methods, but the influence of MAUP (modifiable areal unit problem) in modeling is ignored. This paper aims to model spatial BSD distribution and prove the driving forces of different land use types to BSD through a machine-learning-based multiple interpolation fusion method. The hotspot detection model is employed to establish sample points covering different land use types in urban areas. In order to capture the differences in adaptations among different urban regions and for different data sizes, six machine learning methods are applied and evaluated to improve BSD estimation by fusing five spatial interpolation algorithms, including Inverse Distance Weight, Spline, Kriging, Natural Neighborhood and Trend. The methodological verification of Beijing City shows that the fusion models improve the estimation performance compared with individual interpolation algorithms, and that GRNN (generalized regression neural network) method is superior to all the others. According to fitting results of all POIs based on the GRNN fusion model, we identify which types of facilities correspond to customers that will have a stronger preference for bike-sharing and demonstrate which facility names are more prominent in each land use type. The conclusions presented here enrich our understanding relationships between land-use and BSD, which provide a valuable foundation for the bike-sharing development. Compared with implementing regression in an analysis zone or a square grid, troubles caused by the MAUP are effectively solved through this method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
目土土发布了新的文献求助10
3秒前
舒心的期待完成签到,获得积分10
4秒前
5秒前
5秒前
1234567xjy发布了新的文献求助10
6秒前
NexusExplorer应助湖里采纳,获得10
6秒前
6秒前
7秒前
orange9发布了新的文献求助10
7秒前
牛芳草发布了新的文献求助10
9秒前
11秒前
陈燃发布了新的文献求助10
11秒前
斯文败类应助ql采纳,获得10
11秒前
小二郎应助小禾采纳,获得10
12秒前
张继妖发布了新的文献求助10
14秒前
李龙波发布了新的文献求助10
14秒前
木湾完成签到,获得积分10
14秒前
15秒前
搜集达人应助炙心采纳,获得10
16秒前
19秒前
21秒前
巫马尔槐发布了新的文献求助10
22秒前
我是老大应助xip采纳,获得10
22秒前
大模型应助席茹妖采纳,获得10
22秒前
科研通AI2S应助风茠住采纳,获得10
22秒前
Owen应助壮观以松采纳,获得10
23秒前
恒河猴完成签到,获得积分10
23秒前
张继妖完成签到,获得积分10
24秒前
小禾发布了新的文献求助10
25秒前
万能图书馆应助大饼采纳,获得10
27秒前
28秒前
jie酱拌面发布了新的文献求助10
30秒前
陈燃完成签到,获得积分10
31秒前
31秒前
恒河猴发布了新的文献求助10
34秒前
34秒前
慕青应助小饶采纳,获得10
35秒前
Yihvan发布了新的文献求助10
37秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The diagnosis of sex before birth using cells from the amniotic fluid (a preliminary report) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229522
求助须知:如何正确求助?哪些是违规求助? 2877143
关于积分的说明 8197871
捐赠科研通 2544459
什么是DOI,文献DOI怎么找? 1374406
科研通“疑难数据库(出版商)”最低求助积分说明 646970
邀请新用户注册赠送积分活动 621749