The relative roles of different land-use types in bike-sharing demand: A machine learning-based multiple interpolation fusion method

克里金 计算机科学 插值(计算机图形学) 人工智能 机器学习 土地利用 数据挖掘 工程类 运动(物理) 土木工程
作者
Chao Sun,Jian Lü
出处
期刊:Information Fusion [Elsevier BV]
卷期号:95: 384-400 被引量:11
标识
DOI:10.1016/j.inffus.2023.02.033
摘要

Land use plays a crucial role in promoting the bike-sharing demand. Traditionally, studies on bike-sharing demand (BSD) are mainly focused on its prediction through regression methods, but the influence of MAUP (modifiable areal unit problem) in modeling is ignored. This paper aims to model spatial BSD distribution and prove the driving forces of different land use types to BSD through a machine-learning-based multiple interpolation fusion method. The hotspot detection model is employed to establish sample points covering different land use types in urban areas. In order to capture the differences in adaptations among different urban regions and for different data sizes, six machine learning methods are applied and evaluated to improve BSD estimation by fusing five spatial interpolation algorithms, including Inverse Distance Weight, Spline, Kriging, Natural Neighborhood and Trend. The methodological verification of Beijing City shows that the fusion models improve the estimation performance compared with individual interpolation algorithms, and that GRNN (generalized regression neural network) method is superior to all the others. According to fitting results of all POIs based on the GRNN fusion model, we identify which types of facilities correspond to customers that will have a stronger preference for bike-sharing and demonstrate which facility names are more prominent in each land use type. The conclusions presented here enrich our understanding relationships between land-use and BSD, which provide a valuable foundation for the bike-sharing development. Compared with implementing regression in an analysis zone or a square grid, troubles caused by the MAUP are effectively solved through this method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
RRR完成签到,获得积分10
3秒前
niulugai完成签到,获得积分10
4秒前
盈盈发布了新的文献求助10
5秒前
大Doctor陈发布了新的文献求助10
5秒前
爆米花应助郭小宝采纳,获得10
8秒前
落寞小熊猫完成签到,获得积分10
8秒前
充电宝应助哈哈哈哈哈采纳,获得10
9秒前
9秒前
小聂发布了新的文献求助10
10秒前
10秒前
量子星尘发布了新的文献求助20
10秒前
12秒前
桃铁完成签到,获得积分10
12秒前
wtt发布了新的文献求助10
14秒前
瑾年发布了新的文献求助10
15秒前
安安发布了新的文献求助10
18秒前
18秒前
小聂完成签到,获得积分10
18秒前
19秒前
华仔应助wtt采纳,获得10
20秒前
20秒前
orixero应助童童采纳,获得10
21秒前
21秒前
郭小宝发布了新的文献求助10
23秒前
24秒前
南涧居发布了新的文献求助40
24秒前
batman1999发布了新的文献求助10
25秒前
赘婿应助瑾年采纳,获得10
26秒前
酷酷小子发布了新的文献求助10
27秒前
CipherSage应助WANGSONGLU采纳,获得10
27秒前
moonbeam发布了新的文献求助10
27秒前
黑囡发布了新的文献求助10
30秒前
WUT发布了新的文献求助10
34秒前
ccc完成签到 ,获得积分10
37秒前
瑾年完成签到,获得积分10
39秒前
39秒前
狂野的微笑完成签到,获得积分10
40秒前
40秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979763
求助须知:如何正确求助?哪些是违规求助? 3523767
关于积分的说明 11218570
捐赠科研通 3261233
什么是DOI,文献DOI怎么找? 1800507
邀请新用户注册赠送积分活动 879121
科研通“疑难数据库(出版商)”最低求助积分说明 807182