A Comprehensive Survey of AI-Generated Content (AIGC): A History of Generative AI from GAN to ChatGPT

计算机科学 生成语法 步伐 生成模型 透视图(图形) 过程(计算) 质量(理念) 数据科学 人工智能 哲学 大地测量学 认识论 地理 操作系统
作者
Yihan Cao,Siyu Li,Yixin Liu,Zhiling Yan,Yutong Dai,Philip S. Yu,Lichao Sun
出处
期刊:Cornell University - arXiv 被引量:210
标识
DOI:10.48550/arxiv.2303.04226
摘要

Recently, ChatGPT, along with DALL-E-2 and Codex,has been gaining significant attention from society. As a result, many individuals have become interested in related resources and are seeking to uncover the background and secrets behind its impressive performance. In fact, ChatGPT and other Generative AI (GAI) techniques belong to the category of Artificial Intelligence Generated Content (AIGC), which involves the creation of digital content, such as images, music, and natural language, through AI models. The goal of AIGC is to make the content creation process more efficient and accessible, allowing for the production of high-quality content at a faster pace. AIGC is achieved by extracting and understanding intent information from instructions provided by human, and generating the content according to its knowledge and the intent information. In recent years, large-scale models have become increasingly important in AIGC as they provide better intent extraction and thus, improved generation results. With the growth of data and the size of the models, the distribution that the model can learn becomes more comprehensive and closer to reality, leading to more realistic and high-quality content generation. This survey provides a comprehensive review on the history of generative models, and basic components, recent advances in AIGC from unimodal interaction and multimodal interaction. From the perspective of unimodality, we introduce the generation tasks and relative models of text and image. From the perspective of multimodality, we introduce the cross-application between the modalities mentioned above. Finally, we discuss the existing open problems and future challenges in AIGC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenyutong发布了新的文献求助10
1秒前
花虞发布了新的文献求助10
1秒前
FashionBoy应助人间枝头采纳,获得10
2秒前
yml完成签到 ,获得积分10
2秒前
2秒前
川川发布了新的文献求助10
3秒前
111发布了新的文献求助10
3秒前
阳光照发布了新的文献求助10
4秒前
5秒前
5秒前
明理的夜南完成签到 ,获得积分20
6秒前
diedeline发布了新的文献求助10
7秒前
连沛芹完成签到,获得积分10
8秒前
yml完成签到 ,获得积分10
10秒前
10秒前
inRe完成签到,获得积分10
10秒前
11秒前
15秒前
懒羊羊发布了新的文献求助10
17秒前
18秒前
19秒前
甜滋滋发布了新的文献求助10
20秒前
jiang完成签到,获得积分10
22秒前
bkagyin应助Rwo采纳,获得10
23秒前
危机完成签到 ,获得积分10
25秒前
川川驳回了stan应助
27秒前
chenyutong发布了新的文献求助10
28秒前
diedeline完成签到 ,获得积分10
30秒前
小忙发布了新的文献求助10
32秒前
33秒前
依琬应助chenyutong采纳,获得20
34秒前
36秒前
38秒前
39秒前
彭于晏应助XXXXH采纳,获得10
42秒前
古藤完成签到 ,获得积分10
43秒前
虚幻镜子发布了新的文献求助10
44秒前
45秒前
禁止通行完成签到,获得积分10
48秒前
49秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3214629
求助须知:如何正确求助?哪些是违规求助? 2863251
关于积分的说明 8137704
捐赠科研通 2529429
什么是DOI,文献DOI怎么找? 1363682
科研通“疑难数据库(出版商)”最低求助积分说明 643903
邀请新用户注册赠送积分活动 616437