计算机科学
分割
人工智能
基本事实
卷积神经网络
模式识别(心理学)
深度学习
图像分割
监督学习
注释
人工神经网络
机器学习
作者
Ruoyu Guo,Kunzi Xie,Maurice Pagnucco,Yang Song
标识
DOI:10.1016/j.media.2023.102790
摘要
Deep convolutional neural networks have been highly effective in segmentation tasks. However, segmentation becomes more difficult when training images include many complex instances to segment, such as the task of nuclei segmentation in histopathology images. Weakly supervised learning can reduce the need for large-scale, high-quality ground truth annotations by involving non-expert annotators or algorithms to generate supervision information for segmentation. However, there is still a significant performance gap between weakly supervised learning and fully supervised learning approaches. In this work, we propose a weakly-supervised nuclei segmentation method in a two-stage training manner that only requires annotation of the nuclear centroids. First, we generate boundary and superpixel-based masks as pseudo ground truth labels to train our SAC-Net, which is a segmentation network enhanced by a constraint network and an attention network to effectively address the problems caused by noisy labels. Then, we refine the pseudo labels at the pixel level based on Confident Learning to train the network again. Our method shows highly competitive performance of cell nuclei segmentation in histopathology images on three public datasets. Code will be available at: https://github.com/RuoyuGuo/MaskGA_Net.
科研通智能强力驱动
Strongly Powered by AbleSci AI