亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

How much can AI see in early pregnancy: A multi‐center study of fetus head characterization in week 10–14 in ultrasound using deep learning

胎头 胎儿 医学 矢状面 超声波 胎龄 怀孕 产科 大池 放射科 人工智能 计算机科学 脑脊液 病理 遗传学 生物
作者
Qi Lin,Yuli Zhou,Siyuan Shi,Yujuan Zhang,Shaoli Yin,Xuye Liu,Qihui Peng,Shaoting Huang,Yitao Jiang,Cui Chen,Ruilian She,Jinfeng Xu,Fajin Dong
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:226: 107170-107170 被引量:11
标识
DOI:10.1016/j.cmpb.2022.107170
摘要

To investigate if artificial intelligence can identify fetus intracranial structures in pregnancy week 11-14; to provide an automated method of standard and non-standard sagittal view classification in obstetric ultrasound examination METHOD AND MATERIALS: We proposed a newly designed scheme based on deep learning (DL) - Fetus Framework to identify nine fetus intracranial structures: thalami, midbrain, palate, 4th ventricle, cisterna magna, nuchal translucency (NT), nasal tip, nasal skin, and nasal bone. Fetus Framework was trained and tested on a dataset of 1528 2D sagittal-view ultrasound images from 1519 females collected from Shenzhen People's Hospital. Results from Fetus Framework were further used for standard/non-standard (S-NS) plane classification, a key step for NT measurement and Down Syndrome assessment. S-NS classification was also tested with 156 images from the Longhua branch of Shenzhen People's Hospital. Sensitivity, specificity, and area under the curve (AUC) were evaluated for comparison among Fetus Framework, three classic DL models, and human experts with 1-, 3- and 5-year ultrasound training. Furthermore, 4 physicians with more than 5 years of experience conducted a reader study of diagnosing fetal malformation on a dataset of 316 standard images confirmed by the Fetus framework and another dataset of 316 standard images selected by physicians. Accuracy, sensitivity, specificity, precision, and F1-Score of physicians' diagnosis on both sets are compared.Nine intracranial structures identified by Fetus Framework in validation are all consistent with that of senior radiologists. For S-NS sagittal view identification, Fetus Framework achieved an AUC of 0.996 (95%CI: 0.987, 1.000) in internal test, at par with classic DL models. In external test, FF reaches an AUC of 0.974 (95%CI: 0.952, 0.995), while ResNet-50 arrives at AUC∼0.883, 95% CI 0.828-0.939, Xception AUC∼0.890, 95% CI 0.834-0.946, and DenseNet-121 AUC∼0.894, 95% CI 0.839-0.949. For the internal test set, the sensitivity and specificity of the proposed framework are (0.905, 1), while the first-, third-, and fifth-year clinicians are (0.619, 0.986), (0.690, 0.958), and (0.798, 0.986), respectively. For the external test set, the sensitivity and specificity of FF is (0.989, 0.797), and first-, third-, and fifth-year clinicians are (0.533, 0.875), (0.609, 0.844), and (0.663, 0.781), respectively.On the fetal malformation classification task, all physicians achieved higher accuracy and F1-Score on Fetus selected standard images with statistical significance (p < 0.01).We proposed a new deep learning-based Fetus Framework for identifying key fetus intracranial structures. The framework was tested on data from two different medical centers. The results show consistency and improvement from classic models and human experts in standard and non-standard sagittal view classification during pregnancy week 11-13+6.With further refinement in larger population, the proposed model can improve the efficiency and accuracy of early pregnancy test using ultrasound examination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
龍一发布了新的文献求助20
15秒前
请叫我风吹麦浪应助有人采纳,获得10
28秒前
30秒前
33完成签到,获得积分0
35秒前
asdfqaz完成签到,获得积分10
42秒前
科研通AI2S应助丰富寒风采纳,获得10
54秒前
54秒前
归尘发布了新的文献求助10
59秒前
1分钟前
丰富寒风发布了新的文献求助10
1分钟前
酷炫的尔丝完成签到 ,获得积分10
1分钟前
duanhuiyuan应助有人采纳,获得10
1分钟前
丰富寒风完成签到,获得积分20
1分钟前
激动的似狮完成签到,获得积分10
1分钟前
奔跑的蒲公英完成签到,获得积分10
1分钟前
1分钟前
藤椒辣鱼应助科研通管家采纳,获得10
1分钟前
藤椒辣鱼应助科研通管家采纳,获得10
1分钟前
藤椒辣鱼应助科研通管家采纳,获得10
1分钟前
藤椒辣鱼应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
机智迎天完成签到 ,获得积分10
2分钟前
HS完成签到,获得积分10
2分钟前
2分钟前
Mong那粒沙完成签到,获得积分10
2分钟前
zhang_23完成签到,获得积分10
2分钟前
luna完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
haha发布了新的文献求助30
3分钟前
搜集达人应助ceeray23采纳,获得111
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
haha完成签到,获得积分10
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466817
求助须知:如何正确求助?哪些是违规求助? 3059596
关于积分的说明 9067206
捐赠科研通 2750080
什么是DOI,文献DOI怎么找? 1508953
科研通“疑难数据库(出版商)”最低求助积分说明 697124
邀请新用户注册赠送积分活动 696896