Depth-First Neural Architecture With Attentive Feature Fusion for Efficient Speaker Verification

计算机科学 特征(语言学) 建筑 人工神经网络 保险丝(电气) 人工智能 嵌入 网络体系结构 方案(数学) 计算 深度学习 模式识别(心理学) 语音识别 算法 计算机网络 工程类 数学分析 哲学 电气工程 艺术 语言学 视觉艺术 数学
作者
Bei Liu,Zhengyang Chen,Qian Ye
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 1825-1838
标识
DOI:10.1109/taslp.2023.3273417
摘要

Deep speaker embedding learning based on neural networks has become the predominant approach in speaker verification (SV) currently. In prior studies, researchers have investigated various network architectures. However, rare works pay attention to the question of how to design and scale up networks in a principled way to achieve a better trade-off on model performance and computational complexity. In this paper, we focus on efficient architecture design for speaker verification. Firstly, we systematically study the effect of the network depth and width on performance and empirically discover that depth is more important than the width of networks for speaker verification task . Based on this observation, we propose a novel depth-first (DF) architecture design rule. By applying it to ResNet and ECAPA-TDNN, two new families of much deeper models, namely DF-ResNets and DF-ECAPAs, are constructed. In addition, to further boost the performance of small models in the low computation regime, a novel attentive feature fusion (AFF) scheme is proposed to replace the conventional feature fusion methods. Specifically, we design two different fusion strategies, including sequential AFF (S-AFF) and parallel AFF (P-AFF), which can dynamically fuse features in a learnable way. Experimental results on the VoxCeleb dataset show that the newly proposed DF-ResNets and DF-ECAPAs can achieve a much better trade-off on performance and complexity than the original ResNet and ECAPA-TDNN. Moreover, small models can further obtain up to 40% relative improvement in EER by adopting AFF scheme with negligible computational cost. Finally, a comprehensive comparison with various other published SV systems illustrates that our proposed models achieve the best trade-off on performance and complexity in both low and high computation scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助勤劳傲安采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助150
1秒前
gulu发布了新的文献求助10
2秒前
科研通AI5应助zjc采纳,获得10
2秒前
化学天空发布了新的文献求助10
2秒前
666发布了新的文献求助10
4秒前
4秒前
5秒前
ZY完成签到,获得积分10
5秒前
Su完成签到,获得积分20
6秒前
6秒前
6秒前
dyr完成签到,获得积分10
7秒前
PePsi完成签到 ,获得积分10
7秒前
流沙发布了新的文献求助20
7秒前
充电宝应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
今后应助科研通管家采纳,获得10
9秒前
ding应助科研通管家采纳,获得10
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
负责牛排发布了新的文献求助10
9秒前
上官若男应助牛人采纳,获得10
9秒前
今后应助科研通管家采纳,获得10
10秒前
chhe发布了新的文献求助10
10秒前
orixero应助禤X采纳,获得10
10秒前
桐桐应助科研通管家采纳,获得10
10秒前
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
晴空万里应助joy采纳,获得50
11秒前
孙凤敏发布了新的文献求助10
12秒前
12秒前
12秒前
背后丹妗完成签到,获得积分20
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5124283
求助须知:如何正确求助?哪些是违规求助? 4328544
关于积分的说明 13487638
捐赠科研通 4162942
什么是DOI,文献DOI怎么找? 2281981
邀请新用户注册赠送积分活动 1283241
关于科研通互助平台的介绍 1222434