Depth-First Neural Architecture With Attentive Feature Fusion for Efficient Speaker Verification

计算机科学 特征(语言学) 建筑 人工神经网络 保险丝(电气) 人工智能 嵌入 网络体系结构 方案(数学) 计算 深度学习 模式识别(心理学) 语音识别 算法 计算机网络 工程类 数学分析 哲学 电气工程 艺术 语言学 视觉艺术 数学
作者
Bei Liu,Zhengyang Chen,Qian Ye
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 1825-1838
标识
DOI:10.1109/taslp.2023.3273417
摘要

Deep speaker embedding learning based on neural networks has become the predominant approach in speaker verification (SV) currently. In prior studies, researchers have investigated various network architectures. However, rare works pay attention to the question of how to design and scale up networks in a principled way to achieve a better trade-off on model performance and computational complexity. In this paper, we focus on efficient architecture design for speaker verification. Firstly, we systematically study the effect of the network depth and width on performance and empirically discover that depth is more important than the width of networks for speaker verification task . Based on this observation, we propose a novel depth-first (DF) architecture design rule. By applying it to ResNet and ECAPA-TDNN, two new families of much deeper models, namely DF-ResNets and DF-ECAPAs, are constructed. In addition, to further boost the performance of small models in the low computation regime, a novel attentive feature fusion (AFF) scheme is proposed to replace the conventional feature fusion methods. Specifically, we design two different fusion strategies, including sequential AFF (S-AFF) and parallel AFF (P-AFF), which can dynamically fuse features in a learnable way. Experimental results on the VoxCeleb dataset show that the newly proposed DF-ResNets and DF-ECAPAs can achieve a much better trade-off on performance and complexity than the original ResNet and ECAPA-TDNN. Moreover, small models can further obtain up to 40% relative improvement in EER by adopting AFF scheme with negligible computational cost. Finally, a comprehensive comparison with various other published SV systems illustrates that our proposed models achieve the best trade-off on performance and complexity in both low and high computation scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
落后的听双完成签到 ,获得积分10
1秒前
2秒前
张宝发布了新的文献求助10
2秒前
林齐完成签到 ,获得积分10
3秒前
4秒前
JOKER发布了新的文献求助10
4秒前
共享精神应助yu小鱼采纳,获得30
4秒前
Pauline发布了新的文献求助10
5秒前
5秒前
6秒前
斯文墨镜发布了新的文献求助10
7秒前
7秒前
璐宝完成签到,获得积分10
8秒前
热情的未来完成签到,获得积分20
8秒前
Zjn-完成签到 ,获得积分10
8秒前
ohh发布了新的文献求助10
9秒前
HhhhL发布了新的文献求助10
9秒前
孤岛飞鹰发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
13秒前
14秒前
14秒前
科研通AI2S应助cc采纳,获得10
16秒前
小蘑菇应助HhhhL采纳,获得10
17秒前
细心蚂蚁发布了新的文献求助10
17秒前
CodeCraft应助科研通管家采纳,获得10
17秒前
顾矜应助科研通管家采纳,获得10
17秒前
NexusExplorer应助科研通管家采纳,获得10
17秒前
JamesPei应助科研通管家采纳,获得10
17秒前
英姑应助科研通管家采纳,获得10
17秒前
慕青应助科研通管家采纳,获得10
17秒前
共享精神应助科研通管家采纳,获得10
17秒前
18秒前
搜集达人应助科研通管家采纳,获得10
18秒前
斯文败类应助科研通管家采纳,获得10
18秒前
18秒前
从容芮应助科研通管家采纳,获得10
18秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161657
求助须知:如何正确求助?哪些是违规求助? 2812907
关于积分的说明 7897803
捐赠科研通 2471830
什么是DOI,文献DOI怎么找? 1316176
科研通“疑难数据库(出版商)”最低求助积分说明 631245
版权声明 602129