Depth-First Neural Architecture With Attentive Feature Fusion for Efficient Speaker Verification

计算机科学 特征(语言学) 建筑 人工神经网络 保险丝(电气) 人工智能 嵌入 网络体系结构 方案(数学) 计算 深度学习 模式识别(心理学) 语音识别 算法 计算机网络 工程类 数学分析 哲学 电气工程 艺术 语言学 视觉艺术 数学
作者
Bei Liu,Zhengyang Chen,Qian Ye
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 1825-1838
标识
DOI:10.1109/taslp.2023.3273417
摘要

Deep speaker embedding learning based on neural networks has become the predominant approach in speaker verification (SV) currently. In prior studies, researchers have investigated various network architectures. However, rare works pay attention to the question of how to design and scale up networks in a principled way to achieve a better trade-off on model performance and computational complexity. In this paper, we focus on efficient architecture design for speaker verification. Firstly, we systematically study the effect of the network depth and width on performance and empirically discover that depth is more important than the width of networks for speaker verification task . Based on this observation, we propose a novel depth-first (DF) architecture design rule. By applying it to ResNet and ECAPA-TDNN, two new families of much deeper models, namely DF-ResNets and DF-ECAPAs, are constructed. In addition, to further boost the performance of small models in the low computation regime, a novel attentive feature fusion (AFF) scheme is proposed to replace the conventional feature fusion methods. Specifically, we design two different fusion strategies, including sequential AFF (S-AFF) and parallel AFF (P-AFF), which can dynamically fuse features in a learnable way. Experimental results on the VoxCeleb dataset show that the newly proposed DF-ResNets and DF-ECAPAs can achieve a much better trade-off on performance and complexity than the original ResNet and ECAPA-TDNN. Moreover, small models can further obtain up to 40% relative improvement in EER by adopting AFF scheme with negligible computational cost. Finally, a comprehensive comparison with various other published SV systems illustrates that our proposed models achieve the best trade-off on performance and complexity in both low and high computation scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
Jared应助科研通管家采纳,获得10
刚刚
桐桐应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
Jared应助科研通管家采纳,获得10
刚刚
xzn1123应助科研通管家采纳,获得60
刚刚
一一应助科研通管家采纳,获得10
刚刚
爱库珀应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
hklong完成签到,获得积分10
2秒前
安菲尔德完成签到,获得积分10
3秒前
3秒前
4秒前
活泼醉冬发布了新的文献求助10
5秒前
5秒前
沙拉依丁完成签到,获得积分10
5秒前
zhou发布了新的文献求助10
7秒前
动人的沧海完成签到,获得积分10
8秒前
8秒前
亮亮发布了新的文献求助10
8秒前
Zero完成签到 ,获得积分10
10秒前
12秒前
吃饭了吗123完成签到,获得积分10
12秒前
高兴的海豚完成签到,获得积分10
13秒前
麦田里的守望者完成签到,获得积分10
16秒前
萧一发布了新的文献求助10
16秒前
17秒前
18秒前
乐乐应助周周不喝粥采纳,获得10
19秒前
我是老大应助12345采纳,获得10
20秒前
英姑应助萧一采纳,获得10
22秒前
ww发布了新的文献求助10
22秒前
howard发布了新的文献求助10
24秒前
26秒前
wuxunxun2015发布了新的文献求助10
27秒前
29秒前
微信研友发布了新的文献求助10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604076
求助须知:如何正确求助?哪些是违规求助? 4688908
关于积分的说明 14856886
捐赠科研通 4696312
什么是DOI,文献DOI怎么找? 2541128
邀请新用户注册赠送积分活动 1507302
关于科研通互助平台的介绍 1471851