亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Depth-First Neural Architecture With Attentive Feature Fusion for Efficient Speaker Verification

计算机科学 特征(语言学) 建筑 人工神经网络 保险丝(电气) 人工智能 嵌入 网络体系结构 方案(数学) 计算 深度学习 模式识别(心理学) 语音识别 算法 计算机网络 工程类 数学分析 哲学 电气工程 艺术 语言学 视觉艺术 数学
作者
Bei Liu,Zhengyang Chen,Qian Ye
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 1825-1838
标识
DOI:10.1109/taslp.2023.3273417
摘要

Deep speaker embedding learning based on neural networks has become the predominant approach in speaker verification (SV) currently. In prior studies, researchers have investigated various network architectures. However, rare works pay attention to the question of how to design and scale up networks in a principled way to achieve a better trade-off on model performance and computational complexity. In this paper, we focus on efficient architecture design for speaker verification. Firstly, we systematically study the effect of the network depth and width on performance and empirically discover that depth is more important than the width of networks for speaker verification task . Based on this observation, we propose a novel depth-first (DF) architecture design rule. By applying it to ResNet and ECAPA-TDNN, two new families of much deeper models, namely DF-ResNets and DF-ECAPAs, are constructed. In addition, to further boost the performance of small models in the low computation regime, a novel attentive feature fusion (AFF) scheme is proposed to replace the conventional feature fusion methods. Specifically, we design two different fusion strategies, including sequential AFF (S-AFF) and parallel AFF (P-AFF), which can dynamically fuse features in a learnable way. Experimental results on the VoxCeleb dataset show that the newly proposed DF-ResNets and DF-ECAPAs can achieve a much better trade-off on performance and complexity than the original ResNet and ECAPA-TDNN. Moreover, small models can further obtain up to 40% relative improvement in EER by adopting AFF scheme with negligible computational cost. Finally, a comprehensive comparison with various other published SV systems illustrates that our proposed models achieve the best trade-off on performance and complexity in both low and high computation scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
2秒前
楠楠2001完成签到 ,获得积分10
17秒前
18秒前
Lucas应助小小鹿采纳,获得10
26秒前
34秒前
郝誉发布了新的文献求助10
39秒前
41秒前
45秒前
小小鹿发布了新的文献求助10
47秒前
56秒前
okko完成签到,获得积分10
1分钟前
Hello应助sdndkjfvb采纳,获得10
1分钟前
啦啦啦完成签到,获得积分10
1分钟前
ramsey33完成签到 ,获得积分10
1分钟前
ZXneuro完成签到,获得积分10
1分钟前
1分钟前
Crisp完成签到 ,获得积分10
1分钟前
科研通AI6应助caoju采纳,获得10
1分钟前
1分钟前
阿文完成签到 ,获得积分10
1分钟前
hyyyh完成签到,获得积分10
1分钟前
郝誉发布了新的文献求助10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
jyy应助科研通管家采纳,获得10
1分钟前
1分钟前
sdndkjfvb发布了新的文献求助10
1分钟前
fxs完成签到,获得积分20
1分钟前
王文艺完成签到,获得积分10
1分钟前
flyinthesky完成签到,获得积分10
1分钟前
1分钟前
小小鹿完成签到,获得积分10
1分钟前
浮生六记完成签到 ,获得积分10
1分钟前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502807
求助须知:如何正确求助?哪些是违规求助? 4598515
关于积分的说明 14464275
捐赠科研通 4532106
什么是DOI,文献DOI怎么找? 2483837
邀请新用户注册赠送积分活动 1467039
关于科研通互助平台的介绍 1439695