已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Depth-First Neural Architecture With Attentive Feature Fusion for Efficient Speaker Verification

计算机科学 特征(语言学) 建筑 人工神经网络 保险丝(电气) 人工智能 嵌入 网络体系结构 方案(数学) 计算 深度学习 模式识别(心理学) 语音识别 算法 计算机网络 工程类 数学分析 哲学 电气工程 艺术 语言学 视觉艺术 数学
作者
Bei Liu,Zhengyang Chen,Qian Ye
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 1825-1838
标识
DOI:10.1109/taslp.2023.3273417
摘要

Deep speaker embedding learning based on neural networks has become the predominant approach in speaker verification (SV) currently. In prior studies, researchers have investigated various network architectures. However, rare works pay attention to the question of how to design and scale up networks in a principled way to achieve a better trade-off on model performance and computational complexity. In this paper, we focus on efficient architecture design for speaker verification. Firstly, we systematically study the effect of the network depth and width on performance and empirically discover that depth is more important than the width of networks for speaker verification task . Based on this observation, we propose a novel depth-first (DF) architecture design rule. By applying it to ResNet and ECAPA-TDNN, two new families of much deeper models, namely DF-ResNets and DF-ECAPAs, are constructed. In addition, to further boost the performance of small models in the low computation regime, a novel attentive feature fusion (AFF) scheme is proposed to replace the conventional feature fusion methods. Specifically, we design two different fusion strategies, including sequential AFF (S-AFF) and parallel AFF (P-AFF), which can dynamically fuse features in a learnable way. Experimental results on the VoxCeleb dataset show that the newly proposed DF-ResNets and DF-ECAPAs can achieve a much better trade-off on performance and complexity than the original ResNet and ECAPA-TDNN. Moreover, small models can further obtain up to 40% relative improvement in EER by adopting AFF scheme with negligible computational cost. Finally, a comprehensive comparison with various other published SV systems illustrates that our proposed models achieve the best trade-off on performance and complexity in both low and high computation scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
脑洞疼应助baili123采纳,获得10
3秒前
自由柠檬发布了新的文献求助10
3秒前
3秒前
007完成签到 ,获得积分10
4秒前
快乐的凡霜完成签到 ,获得积分10
4秒前
科研通AI6应助睡觉的猫采纳,获得10
4秒前
5秒前
blue发布了新的文献求助10
5秒前
瘦瘦的老三完成签到,获得积分10
6秒前
8秒前
lulu完成签到 ,获得积分10
8秒前
9秒前
ASHES完成签到,获得积分10
9秒前
Unifrog发布了新的文献求助10
10秒前
香蕉觅云应助迅速服饰采纳,获得10
11秒前
bangbangsh完成签到,获得积分10
11秒前
12秒前
znhy完成签到,获得积分10
13秒前
过眼云烟发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
香蕉觅云应助blue采纳,获得10
14秒前
CHEN发布了新的文献求助10
14秒前
菲比发布了新的文献求助10
15秒前
尕雨茼学完成签到 ,获得积分10
16秒前
duang发布了新的文献求助10
17秒前
贺光萌发布了新的文献求助10
18秒前
18秒前
zzh完成签到,获得积分10
19秒前
baili123发布了新的文献求助10
20秒前
20秒前
cz完成签到 ,获得积分10
20秒前
20秒前
21秒前
科研通AI6应助Gloyxtg采纳,获得10
21秒前
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644082
求助须知:如何正确求助?哪些是违规求助? 4762848
关于积分的说明 15023478
捐赠科研通 4802306
什么是DOI,文献DOI怎么找? 2567408
邀请新用户注册赠送积分活动 1525124
关于科研通互助平台的介绍 1484620