Depth-First Neural Architecture With Attentive Feature Fusion for Efficient Speaker Verification

计算机科学 特征(语言学) 建筑 人工神经网络 保险丝(电气) 人工智能 嵌入 网络体系结构 方案(数学) 计算 深度学习 模式识别(心理学) 语音识别 算法 计算机网络 工程类 数学分析 哲学 电气工程 艺术 语言学 视觉艺术 数学
作者
Bei Liu,Zhengyang Chen,Qian Ye
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 1825-1838
标识
DOI:10.1109/taslp.2023.3273417
摘要

Deep speaker embedding learning based on neural networks has become the predominant approach in speaker verification (SV) currently. In prior studies, researchers have investigated various network architectures. However, rare works pay attention to the question of how to design and scale up networks in a principled way to achieve a better trade-off on model performance and computational complexity. In this paper, we focus on efficient architecture design for speaker verification. Firstly, we systematically study the effect of the network depth and width on performance and empirically discover that depth is more important than the width of networks for speaker verification task . Based on this observation, we propose a novel depth-first (DF) architecture design rule. By applying it to ResNet and ECAPA-TDNN, two new families of much deeper models, namely DF-ResNets and DF-ECAPAs, are constructed. In addition, to further boost the performance of small models in the low computation regime, a novel attentive feature fusion (AFF) scheme is proposed to replace the conventional feature fusion methods. Specifically, we design two different fusion strategies, including sequential AFF (S-AFF) and parallel AFF (P-AFF), which can dynamically fuse features in a learnable way. Experimental results on the VoxCeleb dataset show that the newly proposed DF-ResNets and DF-ECAPAs can achieve a much better trade-off on performance and complexity than the original ResNet and ECAPA-TDNN. Moreover, small models can further obtain up to 40% relative improvement in EER by adopting AFF scheme with negligible computational cost. Finally, a comprehensive comparison with various other published SV systems illustrates that our proposed models achieve the best trade-off on performance and complexity in both low and high computation scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ding应助cancan采纳,获得10
1秒前
孟一完成签到,获得积分10
1秒前
3秒前
zakaria完成签到,获得积分10
3秒前
浮游应助SY采纳,获得10
4秒前
6秒前
佳丽完成签到,获得积分10
7秒前
7秒前
白昼星辰发布了新的文献求助10
7秒前
mxl发布了新的文献求助10
7秒前
黎明完成签到,获得积分10
7秒前
浮游应助tly采纳,获得10
7秒前
踏雪飞鸿完成签到,获得积分10
8秒前
丰富的天佑完成签到 ,获得积分10
9秒前
问天完成签到 ,获得积分10
10秒前
Fairy完成签到,获得积分10
10秒前
黎明发布了新的文献求助10
11秒前
隐形冷亦完成签到,获得积分10
11秒前
12秒前
12秒前
深情安青应助清爽慕山采纳,获得10
12秒前
Orange应助mnc采纳,获得10
14秒前
斯文败类应助MA采纳,获得10
15秒前
绵杨发布了新的文献求助10
16秒前
16秒前
18秒前
馍夹菜完成签到,获得积分10
19秒前
zfd发布了新的文献求助10
20秒前
吴海娇完成签到,获得积分10
21秒前
21秒前
22秒前
22秒前
一个可爱玉完成签到,获得积分20
23秒前
英俊的铭应助chaoschen采纳,获得50
27秒前
星辰大海应助忧心的清炎采纳,获得10
27秒前
慕青应助一个可爱玉采纳,获得10
28秒前
30秒前
充电宝应助Luke采纳,获得10
31秒前
量子星尘发布了新的文献求助10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425319
求助须知:如何正确求助?哪些是违规求助? 4539387
关于积分的说明 14167836
捐赠科研通 4456897
什么是DOI,文献DOI怎么找? 2444339
邀请新用户注册赠送积分活动 1435316
关于科研通互助平台的介绍 1412740