Strong Coupling of Self‐Trapped Excitons to Acoustic Phonons in Bismuth Perovskite Cs3Bi2I9

声子 激子 钙钛矿(结构) 材料科学 凝聚态物理 联轴节(管道) 化学物理 物理 结晶学 化学 冶金
作者
Xing He,Naveen Kumar Tailor,Soumitra Satapathi,Jakoah Brgoch,Ding‐Shyue Yang
出处
期刊:Advanced Optical Materials [Wiley]
卷期号:12 (8) 被引量:9
标识
DOI:10.1002/adom.202300199
摘要

Abstract To assess the potential optoelectronic applications of metal‐halide perovskites, it is critical to have a detailed understanding of the nature and dynamics of interactions between carriers and the polar lattices. Here, the electronic and structural dynamics of bismuth‐based perovskite Cs 3 Bi 2 I 9 are revealed by transient reflectivity and ultrafast electron diffraction. A cross‐examination of these results combined with theoretical analyses allows the identification of the major carrier–phonon coupling mechanism and the associated time scales. It is found that carriers photoinjected into Cs 3 Bi 2 I 9 form self‐trapped excitons on an ultrafast time scale. However, they retain most of their energy, and their coupling to Fröhlich‐type optical phonons is limited at early times. Instead, the long‐lived excitons exert an electronic stress via deformation potential and develop a prominent, sustaining strain field as coherent acoustic phonons in 10 ps. From sub‐ps to ns and beyond, a similar extent of the atomic displacements is found throughout the different stages of structural distortions, from limited local modulations to a coherent strain field to the Debye–Waller random atomic motions on longer times. The current results suggest the potential use of bismuth‐based perovskites for applications other than photovoltaics to take advantage of the carriers’ stronger self‐trapping and long lifetimes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏熠完成签到,获得积分10
1秒前
乐观化蛹完成签到,获得积分10
1秒前
传奇3应助超级盼海采纳,获得50
1秒前
2秒前
fang完成签到,获得积分10
2秒前
Maggie完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
啊哦完成签到 ,获得积分10
3秒前
会飞的猪发布了新的文献求助10
5秒前
6秒前
科研通AI5应助神勇太清采纳,获得10
7秒前
Rain_BJ完成签到,获得积分10
7秒前
8秒前
爱听歌的依霜完成签到,获得积分10
8秒前
skj你考六级完成签到,获得积分10
9秒前
simon完成签到,获得积分10
9秒前
汉堡包应助qq采纳,获得10
10秒前
hhhhh哈哈哈完成签到,获得积分10
10秒前
欧皇降霖发布了新的文献求助10
11秒前
慕青应助会飞的猪采纳,获得10
12秒前
Muller完成签到,获得积分10
13秒前
蜡笔小新发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
chen完成签到,获得积分10
15秒前
16秒前
天天快乐应助饱满的亦旋采纳,获得10
16秒前
砰砰彭发布了新的文献求助10
17秒前
18秒前
潮汐发布了新的文献求助10
18秒前
19秒前
浮游应助程青青采纳,获得10
19秒前
野性的山雁关注了科研通微信公众号
19秒前
20秒前
20秒前
量子星尘发布了新的文献求助150
22秒前
李爱国应助cj采纳,获得10
23秒前
qq发布了新的文献求助10
23秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5143226
求助须知:如何正确求助?哪些是违规求助? 4341244
关于积分的说明 13519986
捐赠科研通 4181483
什么是DOI,文献DOI怎么找? 2293009
邀请新用户注册赠送积分活动 1293582
关于科研通互助平台的介绍 1236234