Frustrating Surface Segregation by Nanoconfinement: Boosting Electrochemical Ozone Production over a B13C2-Encapsulated PtNi Alloy Electrocatalyst

电催化剂 铂金 材料科学 催化作用 合金 析氧 电化学 纳米技术 纳米结构 电解 金属间化合物 化学工程 碳化物 冶金 化学 电极 电解质 物理化学 生物化学 工程类
作者
Min Li,Chenglong Qiu,Tulai Sun,Xiaosa Wang,Libin Xia,Xinying Yang,Wei Zhao,Huaijie Shi,Lei Ding,Xing Zhong,Yihan Zhu,Jianguo Wang
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:62 (20): 7889-7900
标识
DOI:10.1021/acs.iecr.3c00389
摘要

A major challenge that limits the applications of nanostructured electrocatalysts is precise surface structure regulation. The critical performance-impeding factors for the important electrochemical ozone production (EOP) lie in the leaching-induced poor stability as well as the competing oxygen evolution and ozone production reactions over the most promising platinum-based electrocatalysts. Although composition diversification by alloying appears to be a prevailing strategy to optimize platinum-based electrocatalysts, a practical restriction turns out to be the inevitable surface segregation and termination of platinum-enriched structures due to their lower surface energies. In this work, we introduce the nanoconfinement of intermetallic platinum–nickel nanostructures encapsulated by boron carbide, which effectively frustrates the surface segregation of alloy nanostructures and well maintains the pristine termination of the alloy. Precise atomic-level structural elucidation and model construction of the encapsulated alloy nanostructures are achieved by quantitative electron microscopy. The composite nanoalloy with a unique surface termination evokes synergetic catalytic effects that promote the charge transfer between the surface and adsorbed oxygen intermediates, which entails outstanding EOP performance with a high Faraday efficiency of 14.8% in neutral media and long-term stability of up to 120 h as a qualified electrocatalyst for the EOP electrolyzer devices. More importantly, the current work paves a new route to overwhelm the thermodynamically limited surface structures of bare nanoalloy catalysts through diverse nanoconfinement strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
稳重的秋天完成签到,获得积分10
1秒前
1秒前
SYLH应助乐枳采纳,获得10
2秒前
英俊的铭应助木桶人plus采纳,获得10
2秒前
枫叶的脚步完成签到,获得积分10
2秒前
汉堡包应助清脆立果采纳,获得10
2秒前
promise完成签到 ,获得积分10
3秒前
xgx984完成签到,获得积分10
3秒前
李健应助Mss采纳,获得10
3秒前
大模型应助杏仁儿采纳,获得10
3秒前
4秒前
4秒前
默默的棒棒糖完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
muqing完成签到,获得积分10
5秒前
6秒前
整齐棉花糖完成签到,获得积分10
6秒前
糕米发布了新的文献求助10
6秒前
舒适的映易完成签到,获得积分10
6秒前
7秒前
Billy应助1234采纳,获得30
7秒前
7秒前
7秒前
ln发布了新的文献求助10
8秒前
南宫书瑶发布了新的文献求助10
8秒前
CipherSage应助卓垚采纳,获得10
9秒前
9秒前
直率闭月发布了新的文献求助10
9秒前
爆米花应助火星上誉采纳,获得10
9秒前
9秒前
10秒前
豆丁发布了新的文献求助10
10秒前
咕噜发布了新的文献求助10
10秒前
2025alex完成签到,获得积分10
10秒前
完美世界应助框框采纳,获得10
11秒前
王老吉完成签到,获得积分10
11秒前
11秒前
小杰应助NWP采纳,获得10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953878
求助须知:如何正确求助?哪些是违规求助? 3499920
关于积分的说明 11097238
捐赠科研通 3230331
什么是DOI,文献DOI怎么找? 1785920
邀请新用户注册赠送积分活动 869697
科研通“疑难数据库(出版商)”最低求助积分说明 801572