Frustrating Surface Segregation by Nanoconfinement: Boosting Electrochemical Ozone Production over a B13C2-Encapsulated PtNi Alloy Electrocatalyst

电催化剂 铂金 材料科学 催化作用 合金 析氧 电化学 纳米技术 纳米结构 电解 金属间化合物 化学工程 碳化物 冶金 化学 电极 电解质 物理化学 生物化学 工程类
作者
Min Li,Chenglong Qiu,Tulai Sun,Xiaosa Wang,Libin Xia,Xinying Yang,Wei Zhao,Huaijie Shi,Lei Ding,Xing Zhong,Yihan Zhu,Jianguo Wang
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:62 (20): 7889-7900
标识
DOI:10.1021/acs.iecr.3c00389
摘要

A major challenge that limits the applications of nanostructured electrocatalysts is precise surface structure regulation. The critical performance-impeding factors for the important electrochemical ozone production (EOP) lie in the leaching-induced poor stability as well as the competing oxygen evolution and ozone production reactions over the most promising platinum-based electrocatalysts. Although composition diversification by alloying appears to be a prevailing strategy to optimize platinum-based electrocatalysts, a practical restriction turns out to be the inevitable surface segregation and termination of platinum-enriched structures due to their lower surface energies. In this work, we introduce the nanoconfinement of intermetallic platinum–nickel nanostructures encapsulated by boron carbide, which effectively frustrates the surface segregation of alloy nanostructures and well maintains the pristine termination of the alloy. Precise atomic-level structural elucidation and model construction of the encapsulated alloy nanostructures are achieved by quantitative electron microscopy. The composite nanoalloy with a unique surface termination evokes synergetic catalytic effects that promote the charge transfer between the surface and adsorbed oxygen intermediates, which entails outstanding EOP performance with a high Faraday efficiency of 14.8% in neutral media and long-term stability of up to 120 h as a qualified electrocatalyst for the EOP electrolyzer devices. More importantly, the current work paves a new route to overwhelm the thermodynamically limited surface structures of bare nanoalloy catalysts through diverse nanoconfinement strategies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超级mxl发布了新的文献求助10
1秒前
2秒前
叶黄戍发布了新的文献求助10
3秒前
在努力完成签到 ,获得积分10
4秒前
科研通AI6应助kk采纳,获得10
6秒前
沐沐1003完成签到,获得积分10
6秒前
王振凯发布了新的文献求助10
6秒前
阿符家的骡完成签到,获得积分10
7秒前
9秒前
Menand完成签到,获得积分10
10秒前
乐观期待完成签到,获得积分10
10秒前
Ranqi应助科研通管家采纳,获得10
11秒前
11秒前
xcgh应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
心想事成应助科研通管家采纳,获得10
11秒前
帅玉玉完成签到,获得积分10
11秒前
III完成签到,获得积分10
13秒前
15秒前
18秒前
Frank应助Whr采纳,获得10
18秒前
Imp发布了新的文献求助10
19秒前
李健应助王子怡采纳,获得10
20秒前
21秒前
LANER完成签到 ,获得积分10
22秒前
22秒前
crabbbb68发布了新的文献求助10
24秒前
26秒前
无尘泪完成签到,获得积分10
27秒前
ChangShengtzu完成签到 ,获得积分10
28秒前
欢喜吐司发布了新的文献求助10
29秒前
30秒前
vvvg发布了新的文献求助10
32秒前
32秒前
传奇3应助lucas采纳,获得10
33秒前
coolcat完成签到 ,获得积分10
33秒前
Hello应助无名采纳,获得10
34秒前
aliu发布了新的文献求助10
35秒前
汤钰寒发布了新的文献求助10
36秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565757
求助须知:如何正确求助?哪些是违规求助? 4650714
关于积分的说明 14692753
捐赠科研通 4592754
什么是DOI,文献DOI怎么找? 2519716
邀请新用户注册赠送积分活动 1492140
关于科研通互助平台的介绍 1463316