Power consumption prediction of variable refrigerant flow system through data-physics hybrid approach: An online prediction test in office building

可解释性 预测建模 需求响应 试验数据 计算机科学 工程类 数据挖掘 机器学习 电气工程 程序设计语言
作者
Yue Bao,Ziqing Wei,Chunyuan Zheng,Yunxiao Ding,Bin Li,Dong‐Dong Li,Xingang Liang,Xiaoqiang Zhai
出处
期刊:Energy [Elsevier BV]
卷期号:278: 127826-127826 被引量:9
标识
DOI:10.1016/j.energy.2023.127826
摘要

Variable refrigerant flow (VRF) system contains numerous sensors and has the advance for fast response, which is suitable for building demand response (DR) management. Fast and accurate power consumption prediction of VRF system is essential for DR. As traditional prediction methods, white-box models are difficult to build on operational data, while black-box models cannot make interpretable predictions. Neither of them can meet the requirements of power consumption prediction for VRF system under demand response. Therefore, a grey box model for power consumption of VRF system is proposed in this study, which has the advantage of data-driven and interpretability. The proposed model consists of four sub-models, which predict the building thermal load, compressor frequency, high pressure state and low pressure state of VRF, respectively. These predictions are finally used as inputs to the power prediction model. The proposed model is verified on both offline test and online test. The results show that the model is capable of predicting the power consumption accurately under high time resolution. During the online test, the MAE, CV-RMSE, and R2 of the model are 1296.41 W, 24.65% and 0.90, respectively. The proposed model can be used as the evaluation tool of DR management for decision making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
大胆翎发布了新的文献求助10
3秒前
刷完牙吃东西完成签到,获得积分10
4秒前
YOLO完成签到,获得积分10
4秒前
瓜瓜发布了新的文献求助10
6秒前
7秒前
7秒前
9秒前
研友_ZGjaGn发布了新的文献求助10
10秒前
苗惜霜发布了新的文献求助10
11秒前
大胆翎完成签到,获得积分10
12秒前
kfbcj完成签到 ,获得积分10
12秒前
阜睿发布了新的文献求助10
12秒前
希望天下0贩的0应助Mabel采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
所所应助科研通管家采纳,获得10
13秒前
小二郎应助科研通管家采纳,获得10
14秒前
彭于晏应助科研通管家采纳,获得10
14秒前
Theprisoners应助科研通管家采纳,获得20
14秒前
14秒前
隐形曼青应助科研通管家采纳,获得10
14秒前
深情安青应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
14秒前
14秒前
14秒前
桐桐应助科研通管家采纳,获得10
15秒前
15秒前
苗惜霜完成签到,获得积分10
17秒前
18秒前
WDWK完成签到,获得积分10
18秒前
19秒前
老狗完成签到 ,获得积分10
19秒前
邹江煜发布了新的文献求助30
19秒前
21秒前
yongjie20031121完成签到 ,获得积分10
21秒前
天边发布了新的文献求助10
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993971
求助须知:如何正确求助?哪些是违规求助? 3534571
关于积分的说明 11265961
捐赠科研通 3274483
什么是DOI,文献DOI怎么找? 1806363
邀请新用户注册赠送积分活动 883224
科研通“疑难数据库(出版商)”最低求助积分说明 809712