Power consumption prediction of variable refrigerant flow system through data-physics hybrid approach: An online prediction test in office building

可解释性 预测建模 需求响应 试验数据 计算机科学 工程类 数据挖掘 机器学习 电气工程 程序设计语言
作者
Yue Bao,Ziqing Wei,Chunyuan Zheng,Yunxiao Ding,Bin Li,Dong‐Dong Li,Xingang Liang,Xiaoqiang Zhai
出处
期刊:Energy [Elsevier]
卷期号:278: 127826-127826 被引量:9
标识
DOI:10.1016/j.energy.2023.127826
摘要

Variable refrigerant flow (VRF) system contains numerous sensors and has the advance for fast response, which is suitable for building demand response (DR) management. Fast and accurate power consumption prediction of VRF system is essential for DR. As traditional prediction methods, white-box models are difficult to build on operational data, while black-box models cannot make interpretable predictions. Neither of them can meet the requirements of power consumption prediction for VRF system under demand response. Therefore, a grey box model for power consumption of VRF system is proposed in this study, which has the advantage of data-driven and interpretability. The proposed model consists of four sub-models, which predict the building thermal load, compressor frequency, high pressure state and low pressure state of VRF, respectively. These predictions are finally used as inputs to the power prediction model. The proposed model is verified on both offline test and online test. The results show that the model is capable of predicting the power consumption accurately under high time resolution. During the online test, the MAE, CV-RMSE, and R2 of the model are 1296.41 W, 24.65% and 0.90, respectively. The proposed model can be used as the evaluation tool of DR management for decision making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Andorchid完成签到,获得积分10
刚刚
whisper发布了新的文献求助10
1秒前
1秒前
一亿发布了新的文献求助10
2秒前
qi完成签到,获得积分10
2秒前
小赵同学完成签到,获得积分20
3秒前
3秒前
4秒前
竹子发布了新的文献求助10
4秒前
5秒前
望轲完成签到 ,获得积分10
6秒前
香蕉觅云应助huaaaaaa1采纳,获得10
6秒前
TANG完成签到,获得积分10
7秒前
7秒前
7秒前
111发布了新的文献求助10
8秒前
8秒前
王大雨完成签到,获得积分10
8秒前
鱼氵发布了新的文献求助80
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
scott910806发布了新的文献求助10
9秒前
思源应助方舟采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
wanci应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得100
10秒前
Hello应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
赘婿应助科研通管家采纳,获得10
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
凉生发布了新的文献求助10
11秒前
枝桠发布了新的文献求助10
13秒前
wali完成签到 ,获得积分0
13秒前
魔幻的夜白完成签到 ,获得积分10
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136281
求助须知:如何正确求助?哪些是违规求助? 2787312
关于积分的说明 7780922
捐赠科研通 2443313
什么是DOI,文献DOI怎么找? 1299106
科研通“疑难数据库(出版商)”最低求助积分说明 625325
版权声明 600905