Prediction of earthquake magnitude and seismic vulnerability mapping using artificial intelligence techniques: a case study of Turkey

决策树 人工神经网络 计算机科学 地震预报 震级(天文学) 随机森林 地震灾害 机器学习 人工智能 数据挖掘 地震学 地质学 天文 物理
作者
Saptadeep Biswas,Dhruv Kumar,Uttam Kumar Bera
出处
期刊:Research Square - Research Square 被引量:4
标识
DOI:10.21203/rs.3.rs-2863887/v1
摘要

Abstract Earthquake threats can result in fatalities, property destruction, and other cascading effects. Since it is nearly impossible to prevent earthquakes, anticipating the location of future earthquakes and figuring out their likelihood could be very helpful in reducing the seismic threat. In this work, seismic hazard prediction is executed to forecast adverse results using a range of potential artificial intelligence (AI) techniques, including ML and ANN. In the case study, we have looked at Turkey, which was recently and badly damaged by two earthquakes in February 2023. To predict earthquake magnitude, this study used a variety of regression algorithms, including Decision Tree Regressor, Extra-Trees Regressor, Random Forest Regressor, Bayesian Ridge Regressor, and advanced gradient boosting decision tree (GBDT) algorithms such as XGBoost, LightGBM, and CatBoost, as well as three artificial neural networks (ANN). The predicted magnitude and risk zone of an earthquake are mapped using a geographic information system (GIS), and the maps performed well in terms of prediction. The generated maps is showing the expected earthquake risk based on historical data using the statistical computations. The ANN models perform exceptionally well, with R2 scores of 0.99 and 0.98 for training and case study data, respectively, and low values for MSE, MAE, and RMSE. ML models have demonstrated an exceptional ability to properly generalize from a single dataset, which implies they can accurately anticipates results for new and untested data. The results would be helpful to many local emergency preparedness and infrastructure planning organizations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
妖精完成签到 ,获得积分10
刚刚
聪慧橘子完成签到,获得积分10
1秒前
stuffmatter应助海鹰采纳,获得30
1秒前
苒柒发布了新的文献求助30
1秒前
fqk完成签到,获得积分10
1秒前
hg完成签到,获得积分10
1秒前
狸宝的小果子完成签到 ,获得积分10
1秒前
2秒前
2秒前
lh完成签到 ,获得积分10
2秒前
执行正义完成签到 ,获得积分10
2秒前
丘比特应助聚乙二醇采纳,获得10
2秒前
星曳完成签到,获得积分10
2秒前
小火锅发布了新的文献求助10
3秒前
3秒前
1ice完成签到 ,获得积分10
3秒前
大秀子完成签到,获得积分10
5秒前
秋蚓发布了新的文献求助50
6秒前
李至安安完成签到,获得积分10
6秒前
許能完成签到,获得积分10
7秒前
zhang完成签到 ,获得积分10
7秒前
7秒前
8秒前
巡音幻夜发布了新的文献求助10
8秒前
KingYugene完成签到,获得积分10
8秒前
左尔竹完成签到,获得积分10
8秒前
自强不息完成签到,获得积分10
8秒前
糖焗小馒头完成签到,获得积分10
9秒前
右旋王小二完成签到,获得积分10
10秒前
kimon完成签到,获得积分10
11秒前
11秒前
李若风发布了新的文献求助10
11秒前
务实紫真完成签到,获得积分10
11秒前
深情安青应助psj采纳,获得10
11秒前
你说的完成签到 ,获得积分10
13秒前
Akim应助zxvcbnm采纳,获得10
13秒前
深情秋刀鱼完成签到,获得积分10
13秒前
14秒前
我是老大应助Mrivy采纳,获得10
15秒前
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134355
求助须知:如何正确求助?哪些是违规求助? 2785254
关于积分的说明 7770963
捐赠科研通 2440904
什么是DOI,文献DOI怎么找? 1297556
科研通“疑难数据库(出版商)”最低求助积分说明 624987
版权声明 600792