Prediction of earthquake magnitude and seismic vulnerability mapping using artificial intelligence techniques: a case study of Turkey

决策树 人工神经网络 计算机科学 地震预报 震级(天文学) 随机森林 地震灾害 机器学习 人工智能 数据挖掘 地震学 地质学 物理 天文
作者
Saptadeep Biswas,Dhruv Kumar,Uttam Kumar Bera
出处
期刊:Research Square - Research Square 被引量:4
标识
DOI:10.21203/rs.3.rs-2863887/v1
摘要

Abstract Earthquake threats can result in fatalities, property destruction, and other cascading effects. Since it is nearly impossible to prevent earthquakes, anticipating the location of future earthquakes and figuring out their likelihood could be very helpful in reducing the seismic threat. In this work, seismic hazard prediction is executed to forecast adverse results using a range of potential artificial intelligence (AI) techniques, including ML and ANN. In the case study, we have looked at Turkey, which was recently and badly damaged by two earthquakes in February 2023. To predict earthquake magnitude, this study used a variety of regression algorithms, including Decision Tree Regressor, Extra-Trees Regressor, Random Forest Regressor, Bayesian Ridge Regressor, and advanced gradient boosting decision tree (GBDT) algorithms such as XGBoost, LightGBM, and CatBoost, as well as three artificial neural networks (ANN). The predicted magnitude and risk zone of an earthquake are mapped using a geographic information system (GIS), and the maps performed well in terms of prediction. The generated maps is showing the expected earthquake risk based on historical data using the statistical computations. The ANN models perform exceptionally well, with R2 scores of 0.99 and 0.98 for training and case study data, respectively, and low values for MSE, MAE, and RMSE. ML models have demonstrated an exceptional ability to properly generalize from a single dataset, which implies they can accurately anticipates results for new and untested data. The results would be helpful to many local emergency preparedness and infrastructure planning organizations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿西发布了新的文献求助10
刚刚
FANTA关注了科研通微信公众号
1秒前
2秒前
2秒前
3秒前
VLH完成签到,获得积分10
3秒前
Liu应助动听的晓啸采纳,获得20
4秒前
courage发布了新的文献求助10
4秒前
4秒前
清蒸可达鸭完成签到,获得积分10
5秒前
852应助聪明无颜采纳,获得30
5秒前
空间立方体转移技术科学家完成签到,获得积分10
5秒前
Clean发布了新的文献求助10
6秒前
6秒前
6秒前
璨澄发布了新的文献求助10
8秒前
彭于彦祖应助Kaz采纳,获得30
8秒前
妞妞娴发布了新的文献求助10
9秒前
轻松惜筠发布了新的文献求助10
9秒前
核桃应助Rune采纳,获得10
9秒前
9秒前
池鱼发布了新的文献求助10
11秒前
hugo发布了新的文献求助10
12秒前
13秒前
小郭应助qi采纳,获得10
13秒前
端庄的白开水完成签到,获得积分10
14秒前
搜集达人应助Eureka采纳,获得10
14秒前
drdrde4u完成签到,获得积分10
14秒前
欧拉完成签到,获得积分10
14秒前
PLUTO_K22发布了新的文献求助10
14秒前
李健应助彪壮的亦瑶采纳,获得10
15秒前
15秒前
追寻澜发布了新的文献求助10
16秒前
16秒前
FANTA发布了新的文献求助50
17秒前
小蘑菇应助星辰采纳,获得10
17秒前
gentleman完成签到,获得积分10
18秒前
PJ发布了新的文献求助10
18秒前
朴素的念波完成签到,获得积分10
18秒前
18秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962022
求助须知:如何正确求助?哪些是违规求助? 3508316
关于积分的说明 11140304
捐赠科研通 3240919
什么是DOI,文献DOI怎么找? 1791125
邀请新用户注册赠送积分活动 872741
科研通“疑难数据库(出版商)”最低求助积分说明 803352