RPI-EDLCN: An Ensemble Deep Learning Framework Based on Capsule Network for ncRNA–Protein Interaction Prediction

深度学习 自编码 人工智能 计算机科学 人工神经网络 机器学习 模式识别(心理学) 计算生物学 生物
作者
Xiaoyi Li,Wenyan Qu,Jing Yan,Jianjun Tan
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (7): 2221-2235 被引量:6
标识
DOI:10.1021/acs.jcim.3c00377
摘要

Noncoding RNAs (ncRNAs) play crucial roles in many cellular life activities by interacting with proteins. Identification of ncRNA-protein interactions (ncRPIs) is key to understanding the function of ncRNAs. Although a number of computational methods for predicting ncRPIs have been developed, the problem of predicting ncRPIs remains challenging. It has always been the focus of ncRPIs research to select suitable feature extraction methods and develop a deep learning architecture with better recognition performance. In this work, we proposed an ensemble deep learning framework, RPI-EDLCN, based on a capsule network (CapsuleNet) to predict ncRPIs. In terms of feature input, we extracted the sequence features, secondary structure sequence features, motif information, and physicochemical properties of ncRNA/protein. The sequence and secondary structure sequence features of ncRNA/protein are encoded by the conjoint k-mer method and then input into an ensemble deep learning model based on CapsuleNet by combining the motif information and physicochemical properties. In this model, the encoding features are processed by convolution neural network (CNN), deep neural network (DNN), and stacked autoencoder (SAE). Then the advanced features obtained from the processing are input into the CapsuleNet for further feature learning. Compared with other state-of-the-art methods under 5-fold cross-validation, the performance of RPI-EDLCN is the best, and the accuracy of RPI-EDLCN on RPI1807, RPI2241, and NPInter v2.0 data sets was 93.8%, 88.2%, and 91.9%, respectively. The results of the independent test indicated that RPI-EDLCN can effectively predict potential ncRPIs in different organisms. In addition, RPI-EDLCN successfully predicted hub ncRNAs and proteins in Mus musculus ncRNA-protein networks. Overall, our model can be used as an effective tool to predict ncRPIs and provides some useful guidance for future biological studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超帅思天发布了新的文献求助10
1秒前
BioRick完成签到,获得积分10
1秒前
牧长一完成签到 ,获得积分0
3秒前
ltt发布了新的文献求助10
3秒前
5秒前
SCI方便面完成签到,获得积分10
9秒前
怕黑的静蕾应助雪山飞龙采纳,获得10
9秒前
9秒前
xiaoguangtou完成签到,获得积分10
10秒前
11秒前
小马甲应助迷人的芹菜采纳,获得10
11秒前
大个应助口外彭于晏采纳,获得10
12秒前
Espoir完成签到,获得积分10
12秒前
happy发布了新的文献求助50
13秒前
小马甲应助曼凡采纳,获得10
14秒前
14秒前
菘蓝发布了新的文献求助10
14秒前
15秒前
ueue完成签到,获得积分10
15秒前
16秒前
酷波er应助忧郁的心锁采纳,获得10
16秒前
一口橙汁完成签到,获得积分20
16秒前
qin发布了新的文献求助10
17秒前
yar应助清爽帽子采纳,获得50
17秒前
ueue发布了新的文献求助30
18秒前
19秒前
xiaoguangtou发布了新的文献求助10
19秒前
石石刘完成签到 ,获得积分10
20秒前
完美世界应助SCI方便面采纳,获得10
20秒前
bjf555完成签到,获得积分10
21秒前
23秒前
景妙海完成签到 ,获得积分10
26秒前
26秒前
weixiaosi完成签到 ,获得积分10
27秒前
27秒前
27秒前
丘比特应助热心小松鼠采纳,获得10
29秒前
传奇3应助热心小松鼠采纳,获得30
29秒前
怕黑的静蕾应助长度2到采纳,获得10
29秒前
彭于晏应助热心小松鼠采纳,获得10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966796
求助须知:如何正确求助?哪些是违规求助? 3512322
关于积分的说明 11162614
捐赠科研通 3247199
什么是DOI,文献DOI怎么找? 1793730
邀请新用户注册赠送积分活动 874602
科研通“疑难数据库(出版商)”最低求助积分说明 804432