亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

RPI-EDLCN: An Ensemble Deep Learning Framework Based on Capsule Network for ncRNA–Protein Interaction Prediction

深度学习 自编码 人工智能 计算机科学 人工神经网络 机器学习 模式识别(心理学) 计算生物学 生物
作者
Xiaoyi Li,Wenyan Qu,Jing Yan,Jianjun Tan
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (7): 2221-2235 被引量:12
标识
DOI:10.1021/acs.jcim.3c00377
摘要

Noncoding RNAs (ncRNAs) play crucial roles in many cellular life activities by interacting with proteins. Identification of ncRNA-protein interactions (ncRPIs) is key to understanding the function of ncRNAs. Although a number of computational methods for predicting ncRPIs have been developed, the problem of predicting ncRPIs remains challenging. It has always been the focus of ncRPIs research to select suitable feature extraction methods and develop a deep learning architecture with better recognition performance. In this work, we proposed an ensemble deep learning framework, RPI-EDLCN, based on a capsule network (CapsuleNet) to predict ncRPIs. In terms of feature input, we extracted the sequence features, secondary structure sequence features, motif information, and physicochemical properties of ncRNA/protein. The sequence and secondary structure sequence features of ncRNA/protein are encoded by the conjoint k-mer method and then input into an ensemble deep learning model based on CapsuleNet by combining the motif information and physicochemical properties. In this model, the encoding features are processed by convolution neural network (CNN), deep neural network (DNN), and stacked autoencoder (SAE). Then the advanced features obtained from the processing are input into the CapsuleNet for further feature learning. Compared with other state-of-the-art methods under 5-fold cross-validation, the performance of RPI-EDLCN is the best, and the accuracy of RPI-EDLCN on RPI1807, RPI2241, and NPInter v2.0 data sets was 93.8%, 88.2%, and 91.9%, respectively. The results of the independent test indicated that RPI-EDLCN can effectively predict potential ncRPIs in different organisms. In addition, RPI-EDLCN successfully predicted hub ncRNAs and proteins in Mus musculus ncRNA-protein networks. Overall, our model can be used as an effective tool to predict ncRPIs and provides some useful guidance for future biological studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
科研通AI5应助米其林采纳,获得20
2秒前
4秒前
内向如松发布了新的文献求助30
5秒前
001完成签到,获得积分10
5秒前
8秒前
CC发布了新的文献求助10
9秒前
634301059完成签到 ,获得积分10
11秒前
Otter完成签到,获得积分0
19秒前
19秒前
小蘑菇应助ptyz霍建华采纳,获得10
20秒前
呵浅陌发布了新的文献求助10
22秒前
25秒前
呵浅陌完成签到,获得积分10
26秒前
Criminology34应助leo采纳,获得10
29秒前
31秒前
31秒前
GingerF应助科研通管家采纳,获得50
35秒前
浮游应助科研通管家采纳,获得10
35秒前
饼子发布了新的文献求助10
35秒前
GingerF应助科研通管家采纳,获得50
35秒前
浮游应助科研通管家采纳,获得10
36秒前
tuanheqi应助科研通管家采纳,获得30
36秒前
GingerF应助科研通管家采纳,获得50
36秒前
科研通AI2S应助科研通管家采纳,获得30
36秒前
研究牲完成签到,获得积分10
36秒前
研究牲发布了新的文献求助10
39秒前
多情道之完成签到 ,获得积分10
40秒前
豚踢兔完成签到,获得积分10
41秒前
舒萼完成签到,获得积分10
48秒前
nenoaowu应助研究牲采纳,获得30
49秒前
大个应助研究牲采纳,获得30
49秒前
49秒前
52秒前
suy完成签到,获得积分10
56秒前
suy发布了新的文献求助10
59秒前
1分钟前
1分钟前
003完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5185944
求助须知:如何正确求助?哪些是违规求助? 4371293
关于积分的说明 13612012
捐赠科研通 4223623
什么是DOI,文献DOI怎么找? 2316534
邀请新用户注册赠送积分活动 1315159
关于科研通互助平台的介绍 1264147