RPI-EDLCN: An Ensemble Deep Learning Framework Based on Capsule Network for ncRNA–Protein Interaction Prediction

深度学习 自编码 人工智能 计算机科学 人工神经网络 机器学习 模式识别(心理学) 计算生物学 生物
作者
Xiaoyi Li,Wenyan Qu,Jing Yan,Jianjun Tan
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (7): 2221-2235 被引量:6
标识
DOI:10.1021/acs.jcim.3c00377
摘要

Noncoding RNAs (ncRNAs) play crucial roles in many cellular life activities by interacting with proteins. Identification of ncRNA-protein interactions (ncRPIs) is key to understanding the function of ncRNAs. Although a number of computational methods for predicting ncRPIs have been developed, the problem of predicting ncRPIs remains challenging. It has always been the focus of ncRPIs research to select suitable feature extraction methods and develop a deep learning architecture with better recognition performance. In this work, we proposed an ensemble deep learning framework, RPI-EDLCN, based on a capsule network (CapsuleNet) to predict ncRPIs. In terms of feature input, we extracted the sequence features, secondary structure sequence features, motif information, and physicochemical properties of ncRNA/protein. The sequence and secondary structure sequence features of ncRNA/protein are encoded by the conjoint k-mer method and then input into an ensemble deep learning model based on CapsuleNet by combining the motif information and physicochemical properties. In this model, the encoding features are processed by convolution neural network (CNN), deep neural network (DNN), and stacked autoencoder (SAE). Then the advanced features obtained from the processing are input into the CapsuleNet for further feature learning. Compared with other state-of-the-art methods under 5-fold cross-validation, the performance of RPI-EDLCN is the best, and the accuracy of RPI-EDLCN on RPI1807, RPI2241, and NPInter v2.0 data sets was 93.8%, 88.2%, and 91.9%, respectively. The results of the independent test indicated that RPI-EDLCN can effectively predict potential ncRPIs in different organisms. In addition, RPI-EDLCN successfully predicted hub ncRNAs and proteins in Mus musculus ncRNA-protein networks. Overall, our model can be used as an effective tool to predict ncRPIs and provides some useful guidance for future biological studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伶俐的安柏完成签到,获得积分10
刚刚
3秒前
达瓦里氏发布了新的文献求助10
3秒前
rrjl完成签到,获得积分10
3秒前
3秒前
爆米花应助鲁西西采纳,获得10
4秒前
天狗屯月完成签到,获得积分10
5秒前
风色幻想完成签到,获得积分10
6秒前
10秒前
sfef应助sjc采纳,获得10
12秒前
12秒前
文丽发布了新的文献求助10
12秒前
研友_VZG7GZ应助迷人不凡采纳,获得10
13秒前
酷波er应助xfbao采纳,获得10
13秒前
思源应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
pwy应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
打打应助科研通管家采纳,获得10
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
小马甲应助科研通管家采纳,获得30
13秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
无花果应助科研通管家采纳,获得10
14秒前
14秒前
Hello应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
大个应助科研通管家采纳,获得10
14秒前
Ava应助科研通管家采纳,获得10
14秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
xxp关闭了xxp文献求助
15秒前
zlg完成签到 ,获得积分10
15秒前
16秒前
Fan发布了新的文献求助10
16秒前
bkagyin应助下雨了吗采纳,获得10
16秒前
哎嘿应助彪壮的绮烟采纳,获得10
18秒前
默默柚子完成签到,获得积分10
19秒前
田様应助玉米烤肠采纳,获得10
19秒前
20秒前
20秒前
熊11发布了新的文献求助10
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153407
求助须知:如何正确求助?哪些是违规求助? 2804624
关于积分的说明 7860589
捐赠科研通 2462588
什么是DOI,文献DOI怎么找? 1310818
科研通“疑难数据库(出版商)”最低求助积分说明 629396
版权声明 601794