An Attention-Guided Multistream Feature Fusion Network for Early Localization of Risky Traffic Agents in Driving Videos

计算机科学 水准点(测量) 人工智能 特征(语言学) 最小边界框 异常检测 过程(计算) 机器学习 计算机视觉 实时计算 数据挖掘 图像(数学) 哲学 操作系统 语言学 地理 大地测量学
作者
Muhammad Monjurul Karim,Zhaozheng Yin,Ruwen Qin
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:9 (1): 1792-1803 被引量:6
标识
DOI:10.1109/tiv.2023.3275543
摘要

Detecting dangerous traffic agents in videos captured by vehicle-mounted dashboard cameras (dashcams) is essential to ensure safe navigation in complex environments. Accident-related videos are just a minor portion of the driving-related big data, and the transient pre-accident process is highly dynamic and complex. Besides, risky and non-risky traffic agents can be similar in their appearance. These make risky traffic agent localization in the driving video particularly challenging. To this end, this paper proposes an attention-guided multistream feature fusion network (AM-Net) to localize dangerous traffic agents from dashcam videos ahead of potential accidents. Two Gated Recurrent Unit (GRU) networks use object bounding box and optical flow features extracted from consecutive video frames to capture spatio-temporal cues for distinguishing risky traffic agents. An attention module, coupled with the GRUs, learns to identify traffic agents that are relevant to an accident. Fusing the two streams of global and object-level features, AM-Net predicts the riskiness scores of traffic agents in the video. In supporting this study, the paper also introduces a new benchmark dataset called Risky Object Localization (ROL). The dataset contains spatial, temporal, and categorical annotations of the accident, object, and scene-level attributes. The proposed AM-Net achieves a promising performance of 85.59% AUC on the ROL dataset. Additionally, the AM-Net outperforms the current state-of-the-art for video anomaly detection by 3.5% AUC on the public DoTA dataset. A thorough ablation study further reveals AM-Net's merits by assessing the impact of its constituents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11oneelevenisme完成签到,获得积分10
刚刚
紫霃发布了新的文献求助10
刚刚
SciGPT应助i7采纳,获得10
1秒前
1秒前
111112完成签到 ,获得积分10
1秒前
shuang0116发布了新的文献求助10
1秒前
dadada发布了新的文献求助10
1秒前
瓜i发布了新的文献求助10
2秒前
冷艳语山给冷艳语山的求助进行了留言
2秒前
2秒前
franca2005完成签到 ,获得积分10
2秒前
海上生明月完成签到 ,获得积分10
3秒前
深情安青应助Robe采纳,获得10
4秒前
4秒前
renlangfen发布了新的文献求助10
4秒前
Gilana应助Yiran采纳,获得10
4秒前
4秒前
HEIKU应助俏皮秋双采纳,获得10
4秒前
4秒前
笑哈哈发布了新的文献求助10
5秒前
11122发布了新的文献求助10
6秒前
6秒前
Ava应助崩溃采纳,获得10
6秒前
puzhongjiMiQ发布了新的文献求助10
6秒前
6秒前
6秒前
xj发布了新的文献求助10
7秒前
小黑哥完成签到,获得积分20
8秒前
Andy完成签到,获得积分10
9秒前
圆圆滚滚完成签到,获得积分20
9秒前
余光发布了新的文献求助10
9秒前
9秒前
FAPI完成签到,获得积分20
10秒前
生sheng发布了新的文献求助10
10秒前
Theone发布了新的文献求助10
10秒前
快来拾糖完成签到,获得积分10
10秒前
10秒前
科目三应助壳牌懒懒采纳,获得10
10秒前
11秒前
11秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3169616
求助须知:如何正确求助?哪些是违规求助? 2820792
关于积分的说明 7932194
捐赠科研通 2481126
什么是DOI,文献DOI怎么找? 1321678
科研通“疑难数据库(出版商)”最低求助积分说明 633317
版权声明 602541