亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Attention-Guided Multistream Feature Fusion Network for Early Localization of Risky Traffic Agents in Driving Videos

计算机科学 水准点(测量) 人工智能 特征(语言学) 最小边界框 异常检测 过程(计算) 机器学习 计算机视觉 实时计算 数据挖掘 图像(数学) 语言学 哲学 大地测量学 地理 操作系统
作者
Muhammad Monjurul Karim,Zhaozheng Yin,Ruwen Qin
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:9 (1): 1792-1803 被引量:6
标识
DOI:10.1109/tiv.2023.3275543
摘要

Detecting dangerous traffic agents in videos captured by vehicle-mounted dashboard cameras (dashcams) is essential to ensure safe navigation in complex environments. Accident-related videos are just a minor portion of the driving-related big data, and the transient pre-accident process is highly dynamic and complex. Besides, risky and non-risky traffic agents can be similar in their appearance. These make risky traffic agent localization in the driving video particularly challenging. To this end, this paper proposes an attention-guided multistream feature fusion network (AM-Net) to localize dangerous traffic agents from dashcam videos ahead of potential accidents. Two Gated Recurrent Unit (GRU) networks use object bounding box and optical flow features extracted from consecutive video frames to capture spatio-temporal cues for distinguishing risky traffic agents. An attention module, coupled with the GRUs, learns to identify traffic agents that are relevant to an accident. Fusing the two streams of global and object-level features, AM-Net predicts the riskiness scores of traffic agents in the video. In supporting this study, the paper also introduces a new benchmark dataset called Risky Object Localization (ROL). The dataset contains spatial, temporal, and categorical annotations of the accident, object, and scene-level attributes. The proposed AM-Net achieves a promising performance of 85.59% AUC on the ROL dataset. Additionally, the AM-Net outperforms the current state-of-the-art for video anomaly detection by 3.5% AUC on the public DoTA dataset. A thorough ablation study further reveals AM-Net's merits by assessing the impact of its constituents.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Criminology34应助科研通管家采纳,获得10
23秒前
wanci应助科研通管家采纳,获得10
23秒前
J_Xu完成签到 ,获得积分10
23秒前
所所应助凛玖niro采纳,获得10
54秒前
1分钟前
凛玖niro发布了新的文献求助10
1分钟前
霖槿完成签到,获得积分10
1分钟前
1分钟前
十八完成签到 ,获得积分10
1分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
liuliu发布了新的文献求助30
2分钟前
2分钟前
烟花应助Li采纳,获得10
2分钟前
liuliu完成签到,获得积分20
3分钟前
3分钟前
3分钟前
ataybabdallah完成签到,获得积分10
3分钟前
3分钟前
3分钟前
开朗大雁完成签到 ,获得积分10
3分钟前
上官若男应助Marshall采纳,获得10
3分钟前
4分钟前
4分钟前
Marshall发布了新的文献求助10
4分钟前
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
kdjm688完成签到,获得积分10
4分钟前
彭于晏应助蓝色牛马采纳,获得10
4分钟前
4分钟前
蓝色牛马发布了新的文献求助10
4分钟前
5分钟前
5分钟前
9527完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788653
求助须知:如何正确求助?哪些是违规求助? 5710088
关于积分的说明 15473780
捐赠科研通 4916652
什么是DOI,文献DOI怎么找? 2646501
邀请新用户注册赠送积分活动 1594171
关于科研通互助平台的介绍 1548587