An Attention-Guided Multistream Feature Fusion Network for Early Localization of Risky Traffic Agents in Driving Videos

计算机科学 水准点(测量) 人工智能 特征(语言学) 最小边界框 异常检测 过程(计算) 机器学习 计算机视觉 实时计算 数据挖掘 图像(数学) 哲学 操作系统 语言学 地理 大地测量学
作者
Muhammad Monjurul Karim,Zhaozheng Yin,Ruwen Qin
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:9 (1): 1792-1803 被引量:6
标识
DOI:10.1109/tiv.2023.3275543
摘要

Detecting dangerous traffic agents in videos captured by vehicle-mounted dashboard cameras (dashcams) is essential to ensure safe navigation in complex environments. Accident-related videos are just a minor portion of the driving-related big data, and the transient pre-accident process is highly dynamic and complex. Besides, risky and non-risky traffic agents can be similar in their appearance. These make risky traffic agent localization in the driving video particularly challenging. To this end, this paper proposes an attention-guided multistream feature fusion network (AM-Net) to localize dangerous traffic agents from dashcam videos ahead of potential accidents. Two Gated Recurrent Unit (GRU) networks use object bounding box and optical flow features extracted from consecutive video frames to capture spatio-temporal cues for distinguishing risky traffic agents. An attention module, coupled with the GRUs, learns to identify traffic agents that are relevant to an accident. Fusing the two streams of global and object-level features, AM-Net predicts the riskiness scores of traffic agents in the video. In supporting this study, the paper also introduces a new benchmark dataset called Risky Object Localization (ROL). The dataset contains spatial, temporal, and categorical annotations of the accident, object, and scene-level attributes. The proposed AM-Net achieves a promising performance of 85.59% AUC on the ROL dataset. Additionally, the AM-Net outperforms the current state-of-the-art for video anomaly detection by 3.5% AUC on the public DoTA dataset. A thorough ablation study further reveals AM-Net's merits by assessing the impact of its constituents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小次之山完成签到,获得积分10
1秒前
1秒前
air-yi完成签到,获得积分10
1秒前
东西南北完成签到,获得积分10
2秒前
johnrambo0625完成签到,获得积分10
2秒前
Army616完成签到,获得积分10
2秒前
乐观的问兰完成签到 ,获得积分10
3秒前
小宋应助nanchuangjiao采纳,获得50
3秒前
骄阳完成签到 ,获得积分10
5秒前
高兴的忆曼完成签到,获得积分10
5秒前
铜豌豆完成签到 ,获得积分10
6秒前
词汇过万完成签到,获得积分10
7秒前
xc完成签到,获得积分10
9秒前
亚亚完成签到 ,获得积分10
10秒前
阔达磬完成签到,获得积分10
10秒前
zr完成签到,获得积分10
10秒前
Waaly完成签到,获得积分10
10秒前
舒心谷雪完成签到 ,获得积分10
10秒前
10秒前
是问完成签到,获得积分10
11秒前
站在桥上看风景完成签到,获得积分10
13秒前
woobinhua完成签到 ,获得积分10
14秒前
迅速天空完成签到 ,获得积分10
14秒前
东郭秋凌完成签到,获得积分10
15秒前
陈尹蓝完成签到 ,获得积分10
16秒前
Akim应助神勇的天问采纳,获得10
17秒前
黄小北完成签到,获得积分10
17秒前
欣慰白山应助StevenW采纳,获得10
19秒前
Lucas应助1111采纳,获得10
19秒前
kiuikiu完成签到,获得积分10
19秒前
小屁孩完成签到,获得积分0
20秒前
HtObama完成签到,获得积分10
21秒前
21秒前
阿呸完成签到,获得积分10
22秒前
不辞完成签到,获得积分10
22秒前
Joeswith完成签到,获得积分10
24秒前
0.5地板砖发布了新的文献求助10
25秒前
世上僅有的榮光之路完成签到,获得积分0
25秒前
victorchen完成签到,获得积分10
25秒前
26秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008892
求助须知:如何正确求助?哪些是违规求助? 3548554
关于积分的说明 11299093
捐赠科研通 3283171
什么是DOI,文献DOI怎么找? 1810293
邀请新用户注册赠送积分活动 886000
科研通“疑难数据库(出版商)”最低求助积分说明 811245