Fast transonic flow prediction enables efficient aerodynamic design

跨音速 空气动力学 马赫数 计算流体力学 翼型 计算机科学 雷诺数 航空航天工程 物理 机械 工程类 湍流
作者
Fangfang Xie,Fangfang Xie,Tingwei Ji,Xinshuai Zhang,Changdong Zheng,Yao Zheng
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (2) 被引量:9
标识
DOI:10.1063/5.0138946
摘要

A deep learning framework is proposed for real-time transonic flow prediction. To capture the complex shock discontinuity of transonic flow, we introduce the residual network ResNet and deconvolutional neural networks to learn the nonlinear discontinuity phenomenon in transonic flow, which is affected by the Mach number, angle of attack, Reynolds number, and aerodynamic shape. In our framework, flow field variables on actual grid points are utilized in the neural network training to avoid the interpolation operation and the input of spatial position with a point cloud that is required with traditional convolutional neural networks. To investigate and validate the proposed framework, transonic flows around two-dimensional airfoils and three-dimensional wings are utilized to verify its effectiveness and prediction accuracy. The results prove that the model is able to efficiently learn the transonic flow field under the influence of the Mach number, angle of attack, Reynolds number, and aerodynamic shape. Significantly, some essential physical features, such as shock strength and location, flow separation, and the boundary layer, are accurately captured by this model. Furthermore, it is shown that our framework is able to make accurate predictions of the pressure distribution and aerodynamic coefficients. Thus, the present work provides an efficient and robust surrogate model for computational fluid dynamics simulation that enhances the efficiency of complex aerodynamic shape design optimization tasks and represents a step toward the realization of the digital twin concept.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xgrr发布了新的文献求助10
1秒前
红烧肉耶完成签到 ,获得积分10
1秒前
1秒前
3秒前
壮观的夏云完成签到,获得积分10
5秒前
wwl完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
悦耳的芒果完成签到,获得积分10
5秒前
十月完成签到 ,获得积分10
5秒前
开心的母鸡完成签到,获得积分10
6秒前
strama完成签到,获得积分10
7秒前
Akim应助一个小胖子采纳,获得10
7秒前
sdbz001完成签到,获得积分0
7秒前
铁头霸霸完成签到 ,获得积分10
8秒前
斯文败类应助丘山采纳,获得30
9秒前
柳树完成签到,获得积分10
10秒前
pai先生完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
liujianxin完成签到,获得积分20
13秒前
14秒前
何晶晶完成签到 ,获得积分10
14秒前
sakdjfkasdf完成签到,获得积分10
15秒前
罚克由尔完成签到,获得积分0
18秒前
lu完成签到,获得积分10
19秒前
李健的小迷弟应助jy采纳,获得10
20秒前
20秒前
Elanie完成签到,获得积分10
21秒前
朴素鑫完成签到,获得积分10
21秒前
HTY完成签到 ,获得积分10
22秒前
海阔天空完成签到,获得积分10
22秒前
Niniiii完成签到,获得积分10
24秒前
科研小白完成签到,获得积分10
24秒前
yt完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助10
26秒前
量子星尘发布了新的文献求助10
27秒前
踏雾完成签到 ,获得积分10
28秒前
典雅浩轩完成签到,获得积分10
28秒前
己禾发布了新的文献求助10
28秒前
29秒前
ANT完成签到 ,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671646
求助须知:如何正确求助?哪些是违规求助? 4920665
关于积分的说明 15135350
捐赠科研通 4830514
什么是DOI,文献DOI怎么找? 2587122
邀请新用户注册赠送积分活动 1540719
关于科研通互助平台的介绍 1499103