Identification of biomarkers for risk assessment of arsenicosis based on untargeted metabolomics and machine learning algorithms

代谢组学 鉴定(生物学) 机器学习 人工智能 算法 计算生物学 生物信息学 生物 计算机科学 植物
作者
Jin Zhang,Lu Ma,Boyan Li,Xiong Chen,Dapeng Wang,Aihua Zhang
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:870: 161861-161861 被引量:9
标识
DOI:10.1016/j.scitotenv.2023.161861
摘要

Long-term exposure to inorganic arsenic may lead to arsenicosis. There are, however, currently no validated metabolic biomarkers used for the identification of arsenicosis risk. This study aims to identify metabolites associated with arsenicosis and establish prediction models for risk assessment based on untargeted metabolomics and machine learning algorithms.In total, 105 coal-borne arsenicosis patients, with 35 subjects in each of the mild, moderate, and severe subgroups according to their symptom severity, and 60 healthy residents were enrolled from Guizhou, China. Ultra-high performance liquid chromatography-tandem mass spectrometer (UHPLC-MS/MS) was utilized to acquire the plasma metabolic profiles of the studied subjects. Statistical analysis was used to identify disease-associated metabolites. Machine learning algorithms and the identified metabolic biomarkers were resorted to assess the arsenicosis risk.A total of 143 metabolic biomarkers, with organic acids being the majority, were identified to be closely associated with arsenicosis, and the most involved pathway was glycine, serine, and threonine metabolism. Comparative analysis of metabolites in arsenicosis patients with different symptom severity revealed 422 altered molecules, where disrupted metabolism of beta-alanine and arginine demonstrated the most significance. For risk assessment, the model established by a single biomarker (L-carnosine) could undoubtedly discriminate arsenicosis patients from the healthy. For classifying arsenicosis patients with different severity, the model established using 52 metabolites and linear discriminate analysis (LDA) algorithm yielded an accuracy of 0.970-0.979 on calibration set (n = 132) and 0.818-0.848 on validation set (n = 33).Altered metabolites and disrupted pathways are prevalent in arsenicosis patients; The disrupted metabolism of one carbon and dysfunction of antioxidant defense system may partially be causes of the systematic multi-organ damage and carcinogenesis in arsenicosis patients; Metabolic biomarkers, combined with machine learning algorithms, could be efficient for risk assessment and early identification of arsenicosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Evaporate发布了新的文献求助10
刚刚
1秒前
科目三应助顾化蛹采纳,获得10
1秒前
lgf发布了新的文献求助10
1秒前
3333333发布了新的文献求助10
1秒前
科目三应助Ayanami采纳,获得10
3秒前
隐形曼青应助俊秀的翼采纳,获得10
3秒前
3秒前
MchemG应助adorable采纳,获得10
3秒前
3秒前
Jasper应助颖儿采纳,获得10
4秒前
qiuqiu发布了新的文献求助30
4秒前
sinan发布了新的文献求助10
5秒前
5秒前
FashionBoy应助Hayward采纳,获得10
5秒前
5秒前
6秒前
Bob2发布了新的文献求助10
6秒前
gengsumin完成签到,获得积分10
6秒前
6秒前
6秒前
完美世界应助lw采纳,获得10
7秒前
Ayanami完成签到,获得积分10
7秒前
8秒前
8秒前
科目三应助殷昭慧采纳,获得10
9秒前
dicpaccn完成签到,获得积分10
9秒前
36456657应助bjyxszd采纳,获得10
10秒前
10秒前
宁学者发布了新的文献求助10
10秒前
ysxlybt2完成签到,获得积分10
10秒前
10秒前
bing发布了新的文献求助10
11秒前
qiuqiu完成签到,获得积分10
11秒前
牧海冬完成签到,获得积分10
11秒前
11秒前
arrebol完成签到,获得积分10
11秒前
清秋若月举报朱滴滴求助涉嫌违规
12秒前
极品女杀手完成签到,获得积分10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
Time Matters: On Theory and Method 500
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559249
求助须知:如何正确求助?哪些是违规求助? 3133915
关于积分的说明 9404473
捐赠科研通 2834019
什么是DOI,文献DOI怎么找? 1557787
邀请新用户注册赠送积分活动 727686
科研通“疑难数据库(出版商)”最低求助积分说明 716399