清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Adaptive Hypergraph Regularized Multilayer Sparse Tensor Factorization for Hyperspectral Unmixing

高光谱成像 超图 矩阵分解 非负矩阵分解 张量(固有定义) 模式识别(心理学) 特征(语言学) 像素 数学 约束(计算机辅助设计) 塔克分解 计算机科学 人工智能 算法 张量分解 组合数学 纯数学 哲学 特征向量 物理 量子力学 语言学 几何学
作者
Pan Zheng,Hongjun Su,Hongliang Lü,Qian Du
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-18 被引量:9
标识
DOI:10.1109/tgrs.2023.3241115
摘要

Hyperspectral unmixing with tensor models has received great attention in recent years. A tensor-based decomposition method can effectively represent the structural feature of hyperspectral images; however, the obtained results may be physically uninterpretable. To overcome this limitation, a novel adaptive hypergraph regularized multilayer sparse tensor factorization (AHGMLSTF) algorithm is proposed. First, a modified hypergraph is incorporated into tensor factorization, and the modified hypergraph uses spectral angle distance (SAD) instead of Euclidean distance to construct hyperedges to better represent the joint spatial and spectral information. Then, the hypergraph is constructed adaptively by hyperedges of $k$ neighborhoods. Second, the concept of multilayer decomposition is introduced to explore the hierarchical features of hyperspectral images, and a sparse constraint is imposed on each layer to make the unmixing results more consistent with the physical mechanism of mixed spectral pixels. With these constraints, the proposed method established a spectral–spatial joint tensor decomposition model that represents not only the local neighborhood similarity but also the heterogeneity of adjacent edges. Experiments on simulated data and real hyperspectral data demonstrate the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
盈盈发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
20秒前
安东尼奥完成签到 ,获得积分10
23秒前
狂野丹翠应助科研通管家采纳,获得10
33秒前
持卿应助科研通管家采纳,获得10
33秒前
科研通AI6应助科研通管家采纳,获得10
33秒前
持卿应助科研通管家采纳,获得10
33秒前
持卿应助科研通管家采纳,获得10
33秒前
持卿应助科研通管家采纳,获得10
33秒前
我是老大应助莨菪采纳,获得10
35秒前
CipherSage应助milu采纳,获得20
38秒前
46秒前
54秒前
老马哥完成签到 ,获得积分0
1分钟前
大医仁心完成签到 ,获得积分10
1分钟前
CipherSage应助Penny采纳,获得10
1分钟前
1分钟前
Penny完成签到,获得积分10
1分钟前
Penny发布了新的文献求助10
1分钟前
盈盈发布了新的文献求助10
2分钟前
woxinyouyou完成签到,获得积分0
2分钟前
meeteryu完成签到,获得积分10
2分钟前
SciGPT应助盈盈采纳,获得10
2分钟前
持卿应助科研通管家采纳,获得10
2分钟前
持卿应助科研通管家采纳,获得10
2分钟前
持卿应助科研通管家采纳,获得10
2分钟前
持卿应助科研通管家采纳,获得10
2分钟前
狂野丹翠应助科研通管家采纳,获得10
2分钟前
Wone3完成签到 ,获得积分10
2分钟前
knight7m完成签到 ,获得积分10
2分钟前
哈哈完成签到 ,获得积分10
2分钟前
Alisha完成签到,获得积分10
2分钟前
3分钟前
3分钟前
jjy发布了新的文献求助30
3分钟前
jjy完成签到,获得积分10
3分钟前
duoduo完成签到,获得积分10
3分钟前
4分钟前
wl发布了新的文献求助20
4分钟前
Kun应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715020
求助须知:如何正确求助?哪些是违规求助? 5229427
关于积分的说明 15273979
捐赠科研通 4866106
什么是DOI,文献DOI怎么找? 2612683
邀请新用户注册赠送积分活动 1562893
关于科研通互助平台的介绍 1520160