Adaptive Fault Components Extraction by Using an Optimized Weights Spectrum Based Index for Machinery Fault Diagnosis

峰度 希尔伯特-黄变换 断层(地质) 特征提取 计算机科学 噪音(视频) 模式识别(心理学) 算法 可靠性工程 工程类 人工智能 统计 数学 白噪声 电信 地震学 图像(数学) 地质学
作者
Bingchang Hou,Dong Wang,Zhike Peng,Kwok‐Leung Tsui
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:71 (1): 985-995 被引量:9
标识
DOI:10.1109/tie.2023.3243282
摘要

Machinery condition monitoring and fault diagnosis has attracted much attention because it is beneficial to reducing maintenance costs and improving industrial profits. Adaptive fault components extraction (AFCE) is the most crucial step for machinery fault diagnosis, and its core is statistical indices. Existing statistical indices including kurtosis and correlated kurtosis are empirical statistical indices (ESIs), and they cannot exactly quantify fault-related information in signals and distinguish fault components from interferential components. Thus, the ESIs might be easily affected by random impulsive noise, low frequency components, etc. To solve this problem, a new statistical index named optimized weights spectrum based index (OWSI) is proposed in this paper. The OWSI satisfies two good properties to guarantee exact quantification of fault components and effectively distinguish interferential components. Moreover, a new OWSI-based methodology is proposed to realize AFCE, and it can be implemented with signal decomposition algorithms such as variational mode decomposition without needing careful parameters tuning. Bearing and gear real-world fault signals are studied to verify the effectiveness of the proposed methodology. Results show that the proposed methodology is superior to ESI-based methods including classic fast kurtogram and newly developed feature mode decomposition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
ns完成签到,获得积分10
1秒前
细腻晓露发布了新的文献求助10
1秒前
李本来发布了新的文献求助10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得30
2秒前
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得30
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
NN应助科研通管家采纳,获得10
2秒前
科研通AI5应助幽默的宛白采纳,获得30
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
单薄归尘完成签到 ,获得积分10
2秒前
无花果应助科研通管家采纳,获得30
2秒前
2秒前
LY完成签到,获得积分10
3秒前
枫于林完成签到 ,获得积分10
3秒前
3秒前
砰砰砰砰啪!完成签到 ,获得积分10
4秒前
lili完成签到 ,获得积分10
6秒前
xzh完成签到,获得积分10
6秒前
ddsyg126完成签到,获得积分10
7秒前
共享精神应助李小新采纳,获得10
8秒前
小鲤鱼吃大菠萝完成签到,获得积分10
8秒前
xuex1发布了新的文献求助10
8秒前
cc发布了新的文献求助50
10秒前
dd完成签到 ,获得积分10
12秒前
天天完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
yuki完成签到,获得积分10
14秒前
依然灬聆听完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808