Adaptive Fault Components Extraction by Using an Optimized Weights Spectrum Based Index for Machinery Fault Diagnosis

峰度 希尔伯特-黄变换 断层(地质) 特征提取 计算机科学 噪音(视频) 模式识别(心理学) 算法 可靠性工程 工程类 人工智能 统计 数学 白噪声 电信 地震学 图像(数学) 地质学
作者
Bingchang Hou,Dong Wang,Zhike Peng,Kwok‐Leung Tsui
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:71 (1): 985-995 被引量:9
标识
DOI:10.1109/tie.2023.3243282
摘要

Machinery condition monitoring and fault diagnosis has attracted much attention because it is beneficial to reducing maintenance costs and improving industrial profits. Adaptive fault components extraction (AFCE) is the most crucial step for machinery fault diagnosis, and its core is statistical indices. Existing statistical indices including kurtosis and correlated kurtosis are empirical statistical indices (ESIs), and they cannot exactly quantify fault-related information in signals and distinguish fault components from interferential components. Thus, the ESIs might be easily affected by random impulsive noise, low frequency components, etc. To solve this problem, a new statistical index named optimized weights spectrum based index (OWSI) is proposed in this paper. The OWSI satisfies two good properties to guarantee exact quantification of fault components and effectively distinguish interferential components. Moreover, a new OWSI-based methodology is proposed to realize AFCE, and it can be implemented with signal decomposition algorithms such as variational mode decomposition without needing careful parameters tuning. Bearing and gear real-world fault signals are studied to verify the effectiveness of the proposed methodology. Results show that the proposed methodology is superior to ESI-based methods including classic fast kurtogram and newly developed feature mode decomposition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dongcong完成签到 ,获得积分0
2秒前
魏煜佳完成签到,获得积分10
2秒前
wbp31发布了新的文献求助10
3秒前
可爱的函函应助阔达宝莹采纳,获得10
3秒前
CipherSage应助小任同学采纳,获得10
3秒前
3秒前
3秒前
4秒前
沉静丹寒发布了新的文献求助10
5秒前
嘿小黑完成签到,获得积分10
5秒前
6秒前
灰光呀完成签到,获得积分10
6秒前
传奇3应助李晶采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
情怀应助simey采纳,获得30
8秒前
9秒前
FashionBoy应助zhangfuchao采纳,获得10
10秒前
嘿小黑发布了新的文献求助10
10秒前
变成雪花完成签到 ,获得积分10
10秒前
李小诺完成签到,获得积分10
10秒前
CodeCraft应助杨杨采纳,获得10
10秒前
10秒前
11秒前
11秒前
华仔应助动人的汉堡采纳,获得10
11秒前
shadow发布了新的文献求助10
11秒前
12秒前
ding应助RR采纳,获得10
12秒前
momo发布了新的文献求助10
12秒前
13秒前
鹿芮完成签到 ,获得积分10
13秒前
可爱的函函应助一修采纳,获得10
13秒前
风中凌旋应助沉静丹寒采纳,获得10
14秒前
积极觅夏发布了新的文献求助10
14秒前
Swait完成签到 ,获得积分10
14秒前
15秒前
小二发布了新的文献求助10
15秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578523
求助须知:如何正确求助?哪些是违规求助? 4663413
关于积分的说明 14746147
捐赠科研通 4604178
什么是DOI,文献DOI怎么找? 2526874
邀请新用户注册赠送积分活动 1496464
关于科研通互助平台的介绍 1465787