Adaptive Fault Components Extraction by Using an Optimized Weights Spectrum Based Index for Machinery Fault Diagnosis

峰度 希尔伯特-黄变换 断层(地质) 特征提取 计算机科学 噪音(视频) 模式识别(心理学) 算法 可靠性工程 工程类 人工智能 统计 数学 白噪声 电信 地震学 图像(数学) 地质学
作者
Bingchang Hou,Dong Wang,Zhike Peng,Kwok‐Leung Tsui
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:71 (1): 985-995 被引量:9
标识
DOI:10.1109/tie.2023.3243282
摘要

Machinery condition monitoring and fault diagnosis has attracted much attention because it is beneficial to reducing maintenance costs and improving industrial profits. Adaptive fault components extraction (AFCE) is the most crucial step for machinery fault diagnosis, and its core is statistical indices. Existing statistical indices including kurtosis and correlated kurtosis are empirical statistical indices (ESIs), and they cannot exactly quantify fault-related information in signals and distinguish fault components from interferential components. Thus, the ESIs might be easily affected by random impulsive noise, low frequency components, etc. To solve this problem, a new statistical index named optimized weights spectrum based index (OWSI) is proposed in this paper. The OWSI satisfies two good properties to guarantee exact quantification of fault components and effectively distinguish interferential components. Moreover, a new OWSI-based methodology is proposed to realize AFCE, and it can be implemented with signal decomposition algorithms such as variational mode decomposition without needing careful parameters tuning. Bearing and gear real-world fault signals are studied to verify the effectiveness of the proposed methodology. Results show that the proposed methodology is superior to ESI-based methods including classic fast kurtogram and newly developed feature mode decomposition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
共享精神应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
4秒前
烟花应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
4秒前
wanci应助科研通管家采纳,获得10
4秒前
可靠的豌豆完成签到,获得积分10
6秒前
陈功发布了新的文献求助10
7秒前
8秒前
欣慰元蝶发布了新的文献求助10
8秒前
Zz关注了科研通微信公众号
9秒前
10秒前
13秒前
13秒前
oioioioioi发布了新的文献求助10
13秒前
啾啾发布了新的文献求助10
14秒前
爆米花应助柒_l采纳,获得10
15秒前
16秒前
16秒前
Fickle发布了新的文献求助30
17秒前
17秒前
123发布了新的文献求助10
18秒前
18秒前
20秒前
20秒前
xjcy应助ajiduo采纳,获得30
20秒前
21秒前
kanoz完成签到,获得积分10
21秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161216
求助须知:如何正确求助?哪些是违规求助? 2812642
关于积分的说明 7895839
捐赠科研通 2471437
什么是DOI,文献DOI怎么找? 1316030
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602112