Infrared Small Target Detection Based on Local Contrast-Weighted Multidirectional Derivative

人工智能 杂乱 计算机科学 目标捕获 探测器 计算机视觉 加权 红外线的 对比度(视觉) 模式识别(心理学) 分割 雷达 光学 物理 电信 声学
作者
Yunkai Xu,Minjie Wan,Xiaojie Zhang,Jian Wu,Yili Chen,Qian Chen,Guohua Gu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:22
标识
DOI:10.1109/tgrs.2023.3244784
摘要

Realizing robust infrared small target detection in complex backgrounds is of great essence for infrared search and tracking (IRST) applications. However, the high-intensity structures in background regions, such as the sharp edges, make it a challenging task, especially when the target is with low signal-to-clutter ratio (SCR). To address this issue, we propose an infrared small target detection method using local contrast-weighted multidirectional derivative (LCWMD). It is a robust detector that comprehensively considers the target property, background information, and the relation between them. First, we consider the approximate isotropy of the infrared small target and present a new multidirectional derivative with penalty factors based on the Facet model to develop the target salience in the local region. Second, a dual local contrast fusion model with the trilayer design is introduced to amplify the difference between the target and the background, so as to further suppress the high-intensity structural clutters. Finally, the LCWMD map is obtained by weighting the above two filtered maps, after which an adaptive segmentation operation is applied to accomplish the target detection. The results of comparative experiments implemented on real infrared images demonstrate that our method outperforms other state-of-the-art detectors by several times in terms of SCR gain (SCRG) and background suppression factor (BSF).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坦率的口红完成签到,获得积分10
1秒前
如意伟诚完成签到,获得积分10
1秒前
小马甲应助zhangzj采纳,获得10
1秒前
2秒前
Dec发布了新的文献求助10
2秒前
北挽发布了新的文献求助10
3秒前
==发布了新的文献求助10
3秒前
HJJHJH发布了新的文献求助10
4秒前
杳鸢应助dearhjl采纳,获得200
4秒前
MrYAO完成签到,获得积分10
6秒前
完美世界应助mm采纳,获得10
6秒前
安详的沛菡完成签到,获得积分20
7秒前
淡然宛凝完成签到 ,获得积分10
7秒前
陌兮愫发布了新的文献求助10
7秒前
8秒前
257460985完成签到,获得积分20
9秒前
10秒前
10秒前
王雨晨发布了新的文献求助10
11秒前
11秒前
yyds应助wu采纳,获得80
11秒前
杨树发布了新的文献求助10
12秒前
小钻风完成签到,获得积分10
12秒前
13秒前
13秒前
14秒前
14秒前
碳基零完成签到,获得积分10
15秒前
朴实香露发布了新的文献求助10
15秒前
16秒前
16秒前
小七完成签到,获得积分10
16秒前
大模型应助安详的沛菡采纳,获得10
16秒前
17秒前
大力兔子完成签到,获得积分10
18秒前
Hello应助七言山川采纳,获得10
19秒前
zhangzj发布了新的文献求助10
19秒前
烟花应助糖糖采纳,获得10
19秒前
碳基零发布了新的文献求助10
20秒前
汉堡包应助max采纳,获得10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515227
求助须知:如何正确求助?哪些是违规求助? 3097638
关于积分的说明 9236245
捐赠科研通 2792536
什么是DOI,文献DOI怎么找? 1532575
邀请新用户注册赠送积分活动 712185
科研通“疑难数据库(出版商)”最低求助积分说明 707160