HoMeNL: A Homogeneity Measure-Based NonLocal Filtering Framework for Detail-Enhanced (Pol)(In)SAR Image Denoising

像素 同质性(统计学) 估计员 降噪 计算机科学 非本地手段 人工智能 模式识别(心理学) 数学 双边滤波器 算法 计算机视觉 统计 图像去噪 机器学习
作者
Peng Shen,Changcheng Wang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:197: 212-227 被引量:3
标识
DOI:10.1016/j.isprsjprs.2023.01.026
摘要

As an inherent problem in coherent imaging systems, the existence of speckle noise results in SAR images with strong signal-dependent variance and seriously hinders the related properties estimation and the image interpretation. Among many filtering methods, nonlocal means (NLM) have been proven to be effective in reducing noise while preserving details. However, traditional NLM filters still face two core problems: 1) it is difficult for homogeneous pixels selection to construct a patch adaptive to local structure for preventing the omission phenomenon; 2) most central pixel value estimators are still at the stage of suppressing the blurring effect rather than eliminating the wrongly selected heterogeneous pixels. To overcome these two problems in the (Pol)(In)SAR image denoising, this paper proposes a homogeneity measure-based nonlocal (HoMeNL) filtering framework based on the following three innovations: 1) to sufficiently select homogeneous pixels in the patch-wise matching processing, the shape-adaptive (SA) patch can be selected from multiple preset patches with the one-to-many matching strategy; 2) as a general extension of the Lee estimator in (Pol)(In)SAR image denoising, the homogeneity measure (HoMe)-based estimator can achieve an optimal bias-variance tradeoff for the central pixel value; 3) the highlight of the proposed method is that the iterative re-weighted (IRW) estimation combines the residuals statistics and the homogeneity measure to adaptively locate and remove the wrongly selected heterogeneous pixels. Simulated and real experimental results show that the proposed filtering framework owns a superior performance than most state-of-art filters in three aspects of noise reduction, detail enhancement, and coherence magnitude estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
IVY发布了新的文献求助10
刚刚
Daisypharma完成签到,获得积分10
1秒前
阿平发布了新的文献求助10
1秒前
123321完成签到,获得积分10
1秒前
2秒前
科目三应助刘刘采纳,获得10
2秒前
3秒前
梁晓婉完成签到,获得积分10
3秒前
澜生完成签到,获得积分10
4秒前
Ava应助不会投三分采纳,获得10
4秒前
深情安青应助美兮采纳,获得10
4秒前
Coraline应助capricorn采纳,获得10
4秒前
Zu完成签到,获得积分20
5秒前
5秒前
mrright完成签到 ,获得积分10
6秒前
monster0101完成签到 ,获得积分10
6秒前
木野狐发布了新的文献求助10
8秒前
毛毛完成签到,获得积分10
8秒前
10秒前
Hello应助美好斓采纳,获得30
11秒前
小二郎应助茴茴采纳,获得10
11秒前
Jnest完成签到,获得积分10
12秒前
12秒前
01231009yrjz发布了新的文献求助10
14秒前
weixin112233完成签到,获得积分10
14秒前
14秒前
lili完成签到,获得积分10
15秒前
slj完成签到,获得积分10
15秒前
赘婿应助lvshiwen采纳,获得30
17秒前
完美世界应助健壮的蘑菇采纳,获得10
18秒前
852应助木野狐采纳,获得10
18秒前
18秒前
18秒前
19秒前
彭于晏应助AJian采纳,获得10
19秒前
机灵柚子应助积极的黑猫采纳,获得20
21秒前
美好斓发布了新的文献求助30
22秒前
亦hcy完成签到,获得积分10
24秒前
1111发布了新的文献求助10
25秒前
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966882
求助须知:如何正确求助?哪些是违规求助? 3512358
关于积分的说明 11162784
捐赠科研通 3247203
什么是DOI,文献DOI怎么找? 1793752
邀请新用户注册赠送积分活动 874602
科研通“疑难数据库(出版商)”最低求助积分说明 804432