HoMeNL: A Homogeneity Measure-Based NonLocal Filtering Framework for Detail-Enhanced (Pol)(In)SAR Image Denoising

像素 同质性(统计学) 估计员 降噪 计算机科学 非本地手段 人工智能 模式识别(心理学) 数学 双边滤波器 算法 计算机视觉 统计 图像去噪 机器学习
作者
Peng Shen,Changcheng Wang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:197: 212-227 被引量:3
标识
DOI:10.1016/j.isprsjprs.2023.01.026
摘要

As an inherent problem in coherent imaging systems, the existence of speckle noise results in SAR images with strong signal-dependent variance and seriously hinders the related properties estimation and the image interpretation. Among many filtering methods, nonlocal means (NLM) have been proven to be effective in reducing noise while preserving details. However, traditional NLM filters still face two core problems: 1) it is difficult for homogeneous pixels selection to construct a patch adaptive to local structure for preventing the omission phenomenon; 2) most central pixel value estimators are still at the stage of suppressing the blurring effect rather than eliminating the wrongly selected heterogeneous pixels. To overcome these two problems in the (Pol)(In)SAR image denoising, this paper proposes a homogeneity measure-based nonlocal (HoMeNL) filtering framework based on the following three innovations: 1) to sufficiently select homogeneous pixels in the patch-wise matching processing, the shape-adaptive (SA) patch can be selected from multiple preset patches with the one-to-many matching strategy; 2) as a general extension of the Lee estimator in (Pol)(In)SAR image denoising, the homogeneity measure (HoMe)-based estimator can achieve an optimal bias-variance tradeoff for the central pixel value; 3) the highlight of the proposed method is that the iterative re-weighted (IRW) estimation combines the residuals statistics and the homogeneity measure to adaptively locate and remove the wrongly selected heterogeneous pixels. Simulated and real experimental results show that the proposed filtering framework owns a superior performance than most state-of-art filters in three aspects of noise reduction, detail enhancement, and coherence magnitude estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
汉堡包应助123采纳,获得30
2秒前
Ava应助hungry采纳,获得10
2秒前
4秒前
咯哦完成签到,获得积分10
4秒前
plm给plm的求助进行了留言
5秒前
蔡奕瑾发布了新的文献求助30
5秒前
5秒前
6秒前
jane22完成签到,获得积分20
6秒前
子车茗应助湖里采纳,获得10
6秒前
子车茗应助湖里采纳,获得10
7秒前
SUMMER应助湖里采纳,获得10
7秒前
leave完成签到,获得积分10
7秒前
7秒前
充电宝应助siso采纳,获得10
7秒前
8秒前
sally发布了新的文献求助10
9秒前
sanfenzhiyi发布了新的文献求助10
10秒前
HCLonely应助从容道罡采纳,获得10
10秒前
阿橘发布了新的文献求助10
11秒前
zzr123发布了新的文献求助10
13秒前
胡呵呵完成签到 ,获得积分10
14秒前
pluto应助温柔从凝采纳,获得10
15秒前
guoguo完成签到,获得积分10
17秒前
18秒前
搜集达人应助pokexuejiao采纳,获得20
19秒前
20秒前
打打应助困困困采纳,获得10
20秒前
21秒前
Yolo发布了新的文献求助10
22秒前
领导范儿应助多宝鱼儿采纳,获得10
22秒前
科研完成签到,获得积分10
22秒前
23秒前
fhw关闭了fhw文献求助
23秒前
yeah发布了新的文献求助10
24秒前
25秒前
26秒前
27秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229126
求助须知:如何正确求助?哪些是违规求助? 2876954
关于积分的说明 8196847
捐赠科研通 2544250
什么是DOI,文献DOI怎么找? 1374230
科研通“疑难数据库(出版商)”最低求助积分说明 646923
邀请新用户注册赠送积分活动 621703