HoMeNL: A Homogeneity Measure-Based NonLocal Filtering Framework for Detail-Enhanced (Pol)(In)SAR Image Denoising

像素 同质性(统计学) 估计员 降噪 计算机科学 非本地手段 人工智能 模式识别(心理学) 数学 双边滤波器 算法 计算机视觉 统计 图像去噪 机器学习
作者
Peng Shen,Changcheng Wang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:197: 212-227 被引量:3
标识
DOI:10.1016/j.isprsjprs.2023.01.026
摘要

As an inherent problem in coherent imaging systems, the existence of speckle noise results in SAR images with strong signal-dependent variance and seriously hinders the related properties estimation and the image interpretation. Among many filtering methods, nonlocal means (NLM) have been proven to be effective in reducing noise while preserving details. However, traditional NLM filters still face two core problems: 1) it is difficult for homogeneous pixels selection to construct a patch adaptive to local structure for preventing the omission phenomenon; 2) most central pixel value estimators are still at the stage of suppressing the blurring effect rather than eliminating the wrongly selected heterogeneous pixels. To overcome these two problems in the (Pol)(In)SAR image denoising, this paper proposes a homogeneity measure-based nonlocal (HoMeNL) filtering framework based on the following three innovations: 1) to sufficiently select homogeneous pixels in the patch-wise matching processing, the shape-adaptive (SA) patch can be selected from multiple preset patches with the one-to-many matching strategy; 2) as a general extension of the Lee estimator in (Pol)(In)SAR image denoising, the homogeneity measure (HoMe)-based estimator can achieve an optimal bias-variance tradeoff for the central pixel value; 3) the highlight of the proposed method is that the iterative re-weighted (IRW) estimation combines the residuals statistics and the homogeneity measure to adaptively locate and remove the wrongly selected heterogeneous pixels. Simulated and real experimental results show that the proposed filtering framework owns a superior performance than most state-of-art filters in three aspects of noise reduction, detail enhancement, and coherence magnitude estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
smile完成签到,获得积分10
刚刚
斯文败类应助动听导师采纳,获得10
1秒前
1秒前
复杂曼梅发布了新的文献求助10
1秒前
迷糊完成签到,获得积分10
2秒前
2秒前
汉堡包应助Rrr采纳,获得10
3秒前
新的心跳发布了新的文献求助10
3秒前
NN应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得30
5秒前
shouyu29应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得60
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
科研小白应助科研通管家采纳,获得40
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
活力绮兰应助科研通管家采纳,获得10
5秒前
感动秋完成签到 ,获得积分10
6秒前
6秒前
6秒前
gzsy完成签到 ,获得积分10
7秒前
7秒前
sexing发布了新的文献求助10
7秒前
丘比特应助koi采纳,获得10
7秒前
Sang完成签到 ,获得积分10
9秒前
9秒前
10秒前
金色年华完成签到,获得积分10
10秒前
丘比特应助daniel采纳,获得10
11秒前
我是老大应助szl采纳,获得10
12秒前
12秒前
赤邪完成签到,获得积分20
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808