重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

DiatomNet v1.0: A novel approach for automatic diatom testing for drowning diagnosis in forensically biomedical application

计算机科学 数据挖掘
作者
Ji Zhang,Duarte Nuno Vieira,Qi Cheng,Yongzheng Zhu,Kaifei Deng,Jianhua Zhang,Zhiqiang Qin,Qiran Sun,Tianye Zhang,Kaijun Ma,Xiaofeng Zhang,Ping Huang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:232: 107434-107434 被引量:10
标识
DOI:10.1016/j.cmpb.2023.107434
摘要

Diatom testing is supportive for drowning diagnosis in forensic medicine. However, it is very time-consuming and labor-intensive for technicians to identify microscopically a handful of diatoms in sample smears, especially under complex observable backgrounds. Recently, we successfully developed a software, named DiatomNet v1.0 intended to automatically identify diatom frustules in a whole slide under a clear background. Here, we introduced this new software and performed a validation study to elucidate how DiatomNet v1.0 improved its performance with the influence of visible impurities.DiatomNet v1.0 has an intuitive, user-friendly and easy-to-learn graphical user interface (GUI) built in the Drupal and its core architecture for slide analysis including a convolutional neural network (CNN) is written in Python language. The build-in CNN model was evaluated for diatom identification under very complex observable backgrounds with mixtures of common impurities, including carbon pigments and sand sediments. Compared to the original model, the enhanced model following optimization with limited new datasets was evaluated systematically by independent testing and random control trials (RCTs).In independent testing, the original DiatomNet v1.0 was moderately affected, especially when higher densities of impurities existed, and achieved a low recall of 0.817 and F1 score of 0.858 but good precision of 0.905. Following transfer learning with limited new datasets, the enhanced version had better results, with recall and F1 score values of 0.968. A comparative study on real slides showed that the upgraded DiatomNet v1.0 obtained F1 scores of 0.86 and 0.84 for carbon pigment and sand sediment, respectively, slightly worse than manual identification (carbon pigment: 0.91; sand sediment: 0.86), but much less time was needed.The study verified that forensic diatom testing with aid of DiatomNet v1.0 is much more efficient than traditionally manual identification even under complex observable backgrounds. In terms of forensic diatom testing, we proposed a suggested standard on build-in model optimization and evaluation to strengthen the software's generalization in potentially complex conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无极微光应助俊俏的紫菜采纳,获得20
刚刚
刚刚
华仔应助如歌采纳,获得10
1秒前
1秒前
陈兮兮发布了新的文献求助20
1秒前
顾矜应助毛毛0427采纳,获得10
1秒前
moxi摩西发布了新的文献求助10
2秒前
2秒前
2秒前
汤婆婆完成签到,获得积分20
3秒前
lyric完成签到,获得积分10
3秒前
12345完成签到,获得积分10
4秒前
Orange应助Emma采纳,获得10
5秒前
甜甜秋荷发布了新的文献求助10
5秒前
夏弥桥完成签到 ,获得积分10
5秒前
莫名完成签到,获得积分10
6秒前
哈哈哈6056完成签到,获得积分10
6秒前
ruiz完成签到,获得积分10
6秒前
7秒前
8秒前
肥基德发布了新的文献求助10
8秒前
汤婆婆发布了新的文献求助10
8秒前
ding应助研友_Zlx3aZ采纳,获得10
8秒前
面包鱼完成签到,获得积分10
9秒前
怕孤独的鑫完成签到,获得积分10
10秒前
Akim应助万重山采纳,获得10
11秒前
赘婿应助甜甜秋荷采纳,获得10
11秒前
luckydog完成签到,获得积分10
12秒前
科研通AI6应助ribuluoba采纳,获得10
12秒前
一笑发布了新的文献求助10
12秒前
13秒前
trj发布了新的文献求助10
13秒前
福福yu完成签到,获得积分10
13秒前
13秒前
优美的谷完成签到,获得积分10
13秒前
13秒前
13秒前
朱朱发布了新的文献求助10
14秒前
凛冬完成签到,获得积分10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467656
求助须知:如何正确求助?哪些是违规求助? 4571307
关于积分的说明 14329661
捐赠科研通 4497890
什么是DOI,文献DOI怎么找? 2464141
邀请新用户注册赠送积分活动 1452961
关于科研通互助平台的介绍 1427673