DiatomNet v1.0: A novel approach for automatic diatom testing for drowning diagnosis in forensically biomedical application

计算机科学 Python(编程语言) 图形用户界面 卷积神经网络 人工智能 软件 F1得分 硅藻 召回 机器学习 数据挖掘 操作系统 地质学 语言学 海洋学 哲学
作者
Ji Zhang,Duarte Nuno Vieira,Qi Cheng,Yongzheng Zhu,Kaifei Deng,Jianhua Zhang,Zhiqiang Qin,Qiran Sun,Tianye Zhang,Kaijun Ma,Xiaofeng Zhang,Ping Huang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:232: 107434-107434
标识
DOI:10.1016/j.cmpb.2023.107434
摘要

Diatom testing is supportive for drowning diagnosis in forensic medicine. However, it is very time-consuming and labor-intensive for technicians to identify microscopically a handful of diatoms in sample smears, especially under complex observable backgrounds. Recently, we successfully developed a software, named DiatomNet v1.0 intended to automatically identify diatom frustules in a whole slide under a clear background. Here, we introduced this new software and performed a validation study to elucidate how DiatomNet v1.0 improved its performance with the influence of visible impurities.DiatomNet v1.0 has an intuitive, user-friendly and easy-to-learn graphical user interface (GUI) built in the Drupal and its core architecture for slide analysis including a convolutional neural network (CNN) is written in Python language. The build-in CNN model was evaluated for diatom identification under very complex observable backgrounds with mixtures of common impurities, including carbon pigments and sand sediments. Compared to the original model, the enhanced model following optimization with limited new datasets was evaluated systematically by independent testing and random control trials (RCTs).In independent testing, the original DiatomNet v1.0 was moderately affected, especially when higher densities of impurities existed, and achieved a low recall of 0.817 and F1 score of 0.858 but good precision of 0.905. Following transfer learning with limited new datasets, the enhanced version had better results, with recall and F1 score values of 0.968. A comparative study on real slides showed that the upgraded DiatomNet v1.0 obtained F1 scores of 0.86 and 0.84 for carbon pigment and sand sediment, respectively, slightly worse than manual identification (carbon pigment: 0.91; sand sediment: 0.86), but much less time was needed.The study verified that forensic diatom testing with aid of DiatomNet v1.0 is much more efficient than traditionally manual identification even under complex observable backgrounds. In terms of forensic diatom testing, we proposed a suggested standard on build-in model optimization and evaluation to strengthen the software's generalization in potentially complex conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wzxxxx发布了新的文献求助10
刚刚
斯文败类应助勤劳傲晴采纳,获得10
1秒前
shilong.yang发布了新的文献求助10
1秒前
momo完成签到,获得积分10
2秒前
wxp_bioinfo完成签到,获得积分10
3秒前
3秒前
桐桐应助wangg采纳,获得10
3秒前
Jun完成签到,获得积分10
4秒前
芝士的酒发布了新的文献求助50
4秒前
5秒前
赘婿应助复杂的问玉采纳,获得30
5秒前
6秒前
6秒前
7秒前
端庄白开水完成签到,获得积分10
7秒前
吕春雨发布了新的文献求助10
7秒前
大个应助wxp_bioinfo采纳,获得10
8秒前
yqq完成签到 ,获得积分10
8秒前
9秒前
10秒前
芝士发布了新的文献求助10
10秒前
橘子发布了新的文献求助10
11秒前
11秒前
11秒前
晨曦发布了新的文献求助10
12秒前
12秒前
kobiy完成签到 ,获得积分10
12秒前
wu完成签到 ,获得积分10
13秒前
蛋泥完成签到,获得积分10
13秒前
顾矜应助mingjie采纳,获得10
14秒前
zhaowenxian发布了新的文献求助10
14秒前
勤劳傲晴发布了新的文献求助10
15秒前
15秒前
橘子完成签到,获得积分10
17秒前
可耐的从安完成签到 ,获得积分10
18秒前
zho应助背后的诺言采纳,获得10
18秒前
粥粥完成签到,获得积分10
18秒前
19秒前
打打应助陈杰采纳,获得10
20秒前
充电宝应助柔弱凡松采纳,获得10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794