DiatomNet v1.0: A novel approach for automatic diatom testing for drowning diagnosis in forensically biomedical application

计算机科学 Python(编程语言) 图形用户界面 卷积神经网络 人工智能 软件 F1得分 硅藻 召回 机器学习 数据挖掘 操作系统 地质学 语言学 海洋学 哲学
作者
Ji Zhang,Duarte Nuno Vieira,Qi Cheng,Yongzheng Zhu,Kaifei Deng,Jianhua Zhang,Zhiqiang Qin,Qiran Sun,Tianye Zhang,Kaijun Ma,Xiaofeng Zhang,Ping Huang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:232: 107434-107434
标识
DOI:10.1016/j.cmpb.2023.107434
摘要

Diatom testing is supportive for drowning diagnosis in forensic medicine. However, it is very time-consuming and labor-intensive for technicians to identify microscopically a handful of diatoms in sample smears, especially under complex observable backgrounds. Recently, we successfully developed a software, named DiatomNet v1.0 intended to automatically identify diatom frustules in a whole slide under a clear background. Here, we introduced this new software and performed a validation study to elucidate how DiatomNet v1.0 improved its performance with the influence of visible impurities.DiatomNet v1.0 has an intuitive, user-friendly and easy-to-learn graphical user interface (GUI) built in the Drupal and its core architecture for slide analysis including a convolutional neural network (CNN) is written in Python language. The build-in CNN model was evaluated for diatom identification under very complex observable backgrounds with mixtures of common impurities, including carbon pigments and sand sediments. Compared to the original model, the enhanced model following optimization with limited new datasets was evaluated systematically by independent testing and random control trials (RCTs).In independent testing, the original DiatomNet v1.0 was moderately affected, especially when higher densities of impurities existed, and achieved a low recall of 0.817 and F1 score of 0.858 but good precision of 0.905. Following transfer learning with limited new datasets, the enhanced version had better results, with recall and F1 score values of 0.968. A comparative study on real slides showed that the upgraded DiatomNet v1.0 obtained F1 scores of 0.86 and 0.84 for carbon pigment and sand sediment, respectively, slightly worse than manual identification (carbon pigment: 0.91; sand sediment: 0.86), but much less time was needed.The study verified that forensic diatom testing with aid of DiatomNet v1.0 is much more efficient than traditionally manual identification even under complex observable backgrounds. In terms of forensic diatom testing, we proposed a suggested standard on build-in model optimization and evaluation to strengthen the software's generalization in potentially complex conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aurora完成签到 ,获得积分10
1秒前
Chen发布了新的文献求助10
1秒前
2秒前
jiyang发布了新的文献求助10
2秒前
张文康完成签到,获得积分10
2秒前
grisco发布了新的文献求助10
2秒前
3秒前
kk完成签到 ,获得积分10
4秒前
4秒前
5秒前
李健的小迷弟应助煜琪采纳,获得10
6秒前
7秒前
Whisper发布了新的文献求助10
9秒前
12秒前
serena0_0发布了新的文献求助10
12秒前
着急的静芙完成签到 ,获得积分10
13秒前
好好发布了新的文献求助10
17秒前
serena0_0完成签到,获得积分10
22秒前
22秒前
余晖霞光完成签到 ,获得积分10
24秒前
27秒前
28秒前
Dawn完成签到,获得积分10
29秒前
文几给文几的求助进行了留言
31秒前
MrZ发布了新的文献求助10
31秒前
我不是阿良完成签到,获得积分10
32秒前
DAKE发布了新的文献求助10
34秒前
欣喜的真完成签到,获得积分10
35秒前
36秒前
40秒前
真实的采白完成签到 ,获得积分10
40秒前
小蘑菇应助大力沛萍采纳,获得10
40秒前
非洲大象发布了新的文献求助50
41秒前
yuyu完成签到,获得积分10
42秒前
四月清和完成签到,获得积分10
42秒前
MrZ完成签到,获得积分10
42秒前
FashionBoy应助aooo采纳,获得20
43秒前
柯飞扬完成签到,获得积分10
43秒前
44秒前
44秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136067
求助须知:如何正确求助?哪些是违规求助? 2786953
关于积分的说明 7779912
捐赠科研通 2443071
什么是DOI,文献DOI怎么找? 1298892
科研通“疑难数据库(出版商)”最低求助积分说明 625244
版权声明 600870