清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

DiatomNet v1.0: A novel approach for automatic diatom testing for drowning diagnosis in forensically biomedical application

计算机科学 Python(编程语言) 图形用户界面 卷积神经网络 人工智能 软件 F1得分 硅藻 召回 机器学习 数据挖掘 操作系统 地质学 语言学 海洋学 哲学
作者
Ji Zhang,Duarte Nuno Vieira,Qi Cheng,Yongzheng Zhu,Kaifei Deng,Jianhua Zhang,Zhiqiang Qin,Qiran Sun,Tianye Zhang,Kaijun Ma,Xiaofeng Zhang,Ping Huang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:232: 107434-107434
标识
DOI:10.1016/j.cmpb.2023.107434
摘要

Diatom testing is supportive for drowning diagnosis in forensic medicine. However, it is very time-consuming and labor-intensive for technicians to identify microscopically a handful of diatoms in sample smears, especially under complex observable backgrounds. Recently, we successfully developed a software, named DiatomNet v1.0 intended to automatically identify diatom frustules in a whole slide under a clear background. Here, we introduced this new software and performed a validation study to elucidate how DiatomNet v1.0 improved its performance with the influence of visible impurities.DiatomNet v1.0 has an intuitive, user-friendly and easy-to-learn graphical user interface (GUI) built in the Drupal and its core architecture for slide analysis including a convolutional neural network (CNN) is written in Python language. The build-in CNN model was evaluated for diatom identification under very complex observable backgrounds with mixtures of common impurities, including carbon pigments and sand sediments. Compared to the original model, the enhanced model following optimization with limited new datasets was evaluated systematically by independent testing and random control trials (RCTs).In independent testing, the original DiatomNet v1.0 was moderately affected, especially when higher densities of impurities existed, and achieved a low recall of 0.817 and F1 score of 0.858 but good precision of 0.905. Following transfer learning with limited new datasets, the enhanced version had better results, with recall and F1 score values of 0.968. A comparative study on real slides showed that the upgraded DiatomNet v1.0 obtained F1 scores of 0.86 and 0.84 for carbon pigment and sand sediment, respectively, slightly worse than manual identification (carbon pigment: 0.91; sand sediment: 0.86), but much less time was needed.The study verified that forensic diatom testing with aid of DiatomNet v1.0 is much more efficient than traditionally manual identification even under complex observable backgrounds. In terms of forensic diatom testing, we proposed a suggested standard on build-in model optimization and evaluation to strengthen the software's generalization in potentially complex conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
开朗雅霜发布了新的文献求助10
14秒前
燕子应助崔洪瑞采纳,获得10
22秒前
姚老表完成签到,获得积分10
23秒前
yingzaifeixiang完成签到 ,获得积分10
25秒前
CodeCraft应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
自觉石头完成签到 ,获得积分10
1分钟前
科研通AI5应助细心的冷雪采纳,获得10
1分钟前
炜大的我完成签到,获得积分10
2分钟前
耳东陈完成签到 ,获得积分10
2分钟前
科研螺丝完成签到 ,获得积分10
2分钟前
ldjldj_2004完成签到 ,获得积分10
2分钟前
Swift168_YY完成签到 ,获得积分10
3分钟前
我是老大应助心怡采纳,获得10
3分钟前
3分钟前
心怡发布了新的文献求助10
3分钟前
零零零发布了新的文献求助10
3分钟前
4分钟前
dancingidam发布了新的文献求助10
4分钟前
火星人完成签到 ,获得积分10
4分钟前
罗鸯鸯发布了新的文献求助10
4分钟前
dancingidam完成签到,获得积分20
4分钟前
科研通AI5应助零零零采纳,获得10
4分钟前
宇文非笑完成签到 ,获得积分0
4分钟前
罗鸯鸯完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得30
5分钟前
华仔应助科研通管家采纳,获得10
5分钟前
YoiEmu发布了新的文献求助10
5分钟前
可靠往事完成签到,获得积分10
5分钟前
5分钟前
YoiEmu完成签到 ,获得积分10
5分钟前
5分钟前
lilili完成签到,获得积分10
6分钟前
6分钟前
科研通AI5应助dancingidam采纳,获得10
6分钟前
画晴发布了新的文献求助10
6分钟前
科研通AI5应助丁丁采纳,获得10
6分钟前
6分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1500
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3773680
求助须知:如何正确求助?哪些是违规求助? 3319180
关于积分的说明 10193400
捐赠科研通 3033816
什么是DOI,文献DOI怎么找? 1664727
邀请新用户注册赠送积分活动 796293
科研通“疑难数据库(出版商)”最低求助积分说明 757416