清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

DiatomNet v1.0: A novel approach for automatic diatom testing for drowning diagnosis in forensically biomedical application

计算机科学 Python(编程语言) 图形用户界面 卷积神经网络 人工智能 软件 F1得分 硅藻 召回 机器学习 数据挖掘 操作系统 地质学 语言学 海洋学 哲学
作者
Ji Zhang,Duarte Nuno Vieira,Qi Cheng,Yongzheng Zhu,Kaifei Deng,Jianhua Zhang,Zhiqiang Qin,Qiran Sun,Tianye Zhang,Kaijun Ma,Xiaofeng Zhang,Ping Huang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:232: 107434-107434
标识
DOI:10.1016/j.cmpb.2023.107434
摘要

Diatom testing is supportive for drowning diagnosis in forensic medicine. However, it is very time-consuming and labor-intensive for technicians to identify microscopically a handful of diatoms in sample smears, especially under complex observable backgrounds. Recently, we successfully developed a software, named DiatomNet v1.0 intended to automatically identify diatom frustules in a whole slide under a clear background. Here, we introduced this new software and performed a validation study to elucidate how DiatomNet v1.0 improved its performance with the influence of visible impurities.DiatomNet v1.0 has an intuitive, user-friendly and easy-to-learn graphical user interface (GUI) built in the Drupal and its core architecture for slide analysis including a convolutional neural network (CNN) is written in Python language. The build-in CNN model was evaluated for diatom identification under very complex observable backgrounds with mixtures of common impurities, including carbon pigments and sand sediments. Compared to the original model, the enhanced model following optimization with limited new datasets was evaluated systematically by independent testing and random control trials (RCTs).In independent testing, the original DiatomNet v1.0 was moderately affected, especially when higher densities of impurities existed, and achieved a low recall of 0.817 and F1 score of 0.858 but good precision of 0.905. Following transfer learning with limited new datasets, the enhanced version had better results, with recall and F1 score values of 0.968. A comparative study on real slides showed that the upgraded DiatomNet v1.0 obtained F1 scores of 0.86 and 0.84 for carbon pigment and sand sediment, respectively, slightly worse than manual identification (carbon pigment: 0.91; sand sediment: 0.86), but much less time was needed.The study verified that forensic diatom testing with aid of DiatomNet v1.0 is much more efficient than traditionally manual identification even under complex observable backgrounds. In terms of forensic diatom testing, we proposed a suggested standard on build-in model optimization and evaluation to strengthen the software's generalization in potentially complex conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
Brave发布了新的文献求助10
7秒前
文艺的初南完成签到 ,获得积分10
13秒前
末末完成签到 ,获得积分10
16秒前
澜生完成签到 ,获得积分10
17秒前
雪花完成签到 ,获得积分10
20秒前
栀子红了完成签到 ,获得积分10
27秒前
负责的汉堡完成签到 ,获得积分10
28秒前
朱科源啊源完成签到 ,获得积分10
30秒前
西山菩提完成签到,获得积分10
30秒前
包容的忆灵完成签到 ,获得积分10
33秒前
37秒前
ceeray23应助科研通管家采纳,获得10
41秒前
你要学好完成签到 ,获得积分10
43秒前
43秒前
小事完成签到 ,获得积分10
44秒前
CHRIS发布了新的文献求助10
44秒前
gmc完成签到 ,获得积分10
44秒前
5433完成签到 ,获得积分10
46秒前
小郭发布了新的文献求助10
48秒前
桐桐应助CHRIS采纳,获得10
54秒前
牛马完成签到,获得积分10
54秒前
涛1完成签到 ,获得积分10
1分钟前
碗碗豆喵完成签到 ,获得积分10
1分钟前
Brave完成签到,获得积分10
1分钟前
负责以山完成签到 ,获得积分10
1分钟前
丝丢皮得完成签到 ,获得积分10
1分钟前
丝丢皮的完成签到 ,获得积分10
1分钟前
苗条丹南完成签到 ,获得积分10
1分钟前
m李完成签到 ,获得积分10
2分钟前
自由的中蓝完成签到 ,获得积分10
2分钟前
kyle完成签到 ,获得积分10
2分钟前
2分钟前
叼面包的数学狗完成签到 ,获得积分10
2分钟前
oxear完成签到,获得积分10
2分钟前
小郭完成签到,获得积分10
2分钟前
快乐的芷巧完成签到,获得积分10
2分钟前
xfy完成签到,获得积分10
2分钟前
张振宇完成签到 ,获得积分10
2分钟前
Balance Man完成签到 ,获得积分10
2分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3949990
求助须知:如何正确求助?哪些是违规求助? 3495297
关于积分的说明 11076070
捐赠科研通 3225837
什么是DOI,文献DOI怎么找? 1783291
邀请新用户注册赠送积分活动 867584
科研通“疑难数据库(出版商)”最低求助积分说明 800839