Methodological and Quality Flaws in the Use of Artificial Intelligence in Mental Health Research: Systematic Review

心理健康 系统回顾 人口 批判性评价 指南 斯科普斯 梅德林 医学 数据提取 精神科 心理学 替代医学 环境卫生 政治学 病理 法学
作者
Roberto Tornero-Costa,Antonio Martînez-Millana,Natasha Azzopardi-Muscat,Ledia Lazeri,Vicente Traver Salcedo,David Novillo-Ortiz
出处
期刊:JMIR mental health [JMIR Publications Inc.]
卷期号:10: e42045-e42045 被引量:10
标识
DOI:10.2196/42045
摘要

Artificial intelligence (AI) is giving rise to a revolution in medicine and health care. Mental health conditions are highly prevalent in many countries, and the COVID-19 pandemic has increased the risk of further erosion of the mental well-being in the population. Therefore, it is relevant to assess the current status of the application of AI toward mental health research to inform about trends, gaps, opportunities, and challenges.This study aims to perform a systematic overview of AI applications in mental health in terms of methodologies, data, outcomes, performance, and quality.A systematic search in PubMed, Scopus, IEEE Xplore, and Cochrane databases was conducted to collect records of use cases of AI for mental health disorder studies from January 2016 to November 2021. Records were screened for eligibility if they were a practical implementation of AI in clinical trials involving mental health conditions. Records of AI study cases were evaluated and categorized by the International Classification of Diseases 11th Revision (ICD-11). Data related to trial settings, collection methodology, features, outcomes, and model development and evaluation were extracted following the CHARMS (Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies) guideline. Further, evaluation of risk of bias is provided.A total of 429 nonduplicated records were retrieved from the databases and 129 were included for a full assessment-18 of which were manually added. The distribution of AI applications in mental health was found unbalanced between ICD-11 mental health categories. Predominant categories were Depressive disorders (n=70) and Schizophrenia or other primary psychotic disorders (n=26). Most interventions were based on randomized controlled trials (n=62), followed by prospective cohorts (n=24) among observational studies. AI was typically applied to evaluate quality of treatments (n=44) or stratify patients into subgroups and clusters (n=31). Models usually applied a combination of questionnaires and scales to assess symptom severity using electronic health records (n=49) as well as medical images (n=33). Quality assessment revealed important flaws in the process of AI application and data preprocessing pipelines. One-third of the studies (n=56) did not report any preprocessing or data preparation. One-fifth of the models were developed by comparing several methods (n=35) without assessing their suitability in advance and a small proportion reported external validation (n=21). Only 1 paper reported a second assessment of a previous AI model. Risk of bias and transparent reporting yielded low scores due to a poor reporting of the strategy for adjusting hyperparameters, coefficients, and the explainability of the models. International collaboration was anecdotal (n=17) and data and developed models mostly remained private (n=126).These significant shortcomings, alongside the lack of information to ensure reproducibility and transparency, are indicative of the challenges that AI in mental health needs to face before contributing to a solid base for knowledge generation and for being a support tool in mental health management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮生完成签到 ,获得积分10
4秒前
5秒前
FashionBoy应助Desire采纳,获得10
7秒前
7秒前
瓷穹完成签到,获得积分10
10秒前
天天快乐应助WSCNOK采纳,获得10
12秒前
pterionGao完成签到 ,获得积分10
12秒前
kk完成签到,获得积分10
13秒前
小二郎应助123采纳,获得10
13秒前
ibigbird发布了新的文献求助10
14秒前
15秒前
18秒前
可爱的函函应助美丽松鼠采纳,获得10
18秒前
sweams关注了科研通微信公众号
18秒前
风雪夜归人完成签到,获得积分10
18秒前
19秒前
斯文败类应助lll采纳,获得10
19秒前
21秒前
杨知意发布了新的文献求助10
23秒前
无聊的依珊完成签到,获得积分10
23秒前
23秒前
24秒前
dingdingding完成签到,获得积分10
24秒前
air233发布了新的文献求助10
24秒前
star完成签到,获得积分10
24秒前
要减肥朋友完成签到,获得积分10
25秒前
25秒前
25秒前
25秒前
25秒前
25秒前
27秒前
巴山夜雨发布了新的文献求助10
27秒前
28秒前
YUN发布了新的文献求助10
29秒前
大哈鱼发布了新的文献求助10
29秒前
29秒前
Druid发布了新的文献求助10
29秒前
djb发布了新的文献求助30
29秒前
美丽松鼠发布了新的文献求助10
30秒前
高分求助中
The Data Economy: Tools and Applications 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3119973
求助须知:如何正确求助?哪些是违规求助? 2770595
关于积分的说明 7704878
捐赠科研通 2425848
什么是DOI,文献DOI怎么找? 1288246
科研通“疑难数据库(出版商)”最低求助积分说明 620932
版权声明 599998