Spectral Super-Resolution via Model-Guided Cross-Fusion Network

计算机科学 高光谱成像 人工智能 卷积(计算机科学) 图像分辨率 卷积神经网络 图像(数学) 模式识别(心理学) 计算机视觉 光谱成像 人工神经网络 遥感 地质学
作者
Renwei Dian,Tianci Shan,Wei He,Haibo Liu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (7): 10059-10070 被引量:27
标识
DOI:10.1109/tnnls.2023.3238506
摘要

Spectral super-resolution, which reconstructs a hyperspectral image (HSI) from a single red-green-blue (RGB) image, has acquired more and more attention. Recently, convolution neural networks (CNNs) have achieved promising performance. However, they often fail to simultaneously exploit the imaging model of the spectral super-resolution and complex spatial and spectral characteristics of the HSI. To tackle the above problems, we build a novel cross fusion (CF)-based model-guided network (called SSRNet) for spectral super-resolution. In specific, based on the imaging model, we unfold the spectral super-resolution into the HSI prior learning (HPL) module and imaging model guiding (IMG) module. Instead of just modeling one kind of image prior, the HPL module is composed of two subnetworks with different structures, which can effectively learn the complex spatial and spectral priors of the HSI, respectively. Furthermore, a CF strategy is used to establish the connection between the two subnetworks, which further improves the learning performance of the CNN. The IMG module results in solving a strong convex optimization problem, which adaptively optimizes and merges the two features learned by the HPL module by exploiting the imaging model. The two modules are alternately connected to achieve optimal HSI reconstruction performance. Experiments on both the simulated and real data demonstrate that the proposed method can achieve superior spectral reconstruction results with relatively small model size. The code will be available at https://github.com/renweidian.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
3秒前
传奇3应助二硫碘化钾采纳,获得10
3秒前
3秒前
4秒前
5秒前
6秒前
6秒前
李新悦发布了新的文献求助10
7秒前
钮卿发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
烂漫千万发布了新的文献求助10
9秒前
吴彦祖发布了新的文献求助10
9秒前
芮明霞发布了新的文献求助10
9秒前
漂亮萝莉完成签到,获得积分10
9秒前
晚霞不晚完成签到,获得积分10
9秒前
10秒前
开心友儿完成签到,获得积分10
11秒前
陈纸溪发布了新的文献求助10
12秒前
松鼠15111发布了新的文献求助30
12秒前
李星发布了新的文献求助10
13秒前
17秒前
ED应助李星采纳,获得10
19秒前
gattina完成签到,获得积分10
19秒前
ED应助李星采纳,获得10
19秒前
共享精神应助科yt采纳,获得10
20秒前
21秒前
一个冷漠无情的人完成签到,获得积分10
22秒前
24秒前
烂漫千万完成签到,获得积分10
25秒前
26秒前
李星完成签到,获得积分20
28秒前
希望天下0贩的0应助WN采纳,获得10
29秒前
aaaaaa发布了新的文献求助10
30秒前
Z_Z完成签到,获得积分10
31秒前
皓月星辰发布了新的文献求助10
33秒前
33秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962701
求助须知:如何正确求助?哪些是违规求助? 3508707
关于积分的说明 11142251
捐赠科研通 3241458
什么是DOI,文献DOI怎么找? 1791539
邀请新用户注册赠送积分活动 872968
科研通“疑难数据库(出版商)”最低求助积分说明 803517