Spectral Super-Resolution via Model-Guided Cross-Fusion Network

计算机科学 高光谱成像 人工智能 卷积(计算机科学) 图像分辨率 卷积神经网络 图像(数学) 模式识别(心理学) 计算机视觉 光谱成像 人工神经网络 遥感 地质学
作者
Renwei Dian,Tianci Shan,Wei He,Haibo Liu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (7): 10059-10070 被引量:27
标识
DOI:10.1109/tnnls.2023.3238506
摘要

Spectral super-resolution, which reconstructs a hyperspectral image (HSI) from a single red-green-blue (RGB) image, has acquired more and more attention. Recently, convolution neural networks (CNNs) have achieved promising performance. However, they often fail to simultaneously exploit the imaging model of the spectral super-resolution and complex spatial and spectral characteristics of the HSI. To tackle the above problems, we build a novel cross fusion (CF)-based model-guided network (called SSRNet) for spectral super-resolution. In specific, based on the imaging model, we unfold the spectral super-resolution into the HSI prior learning (HPL) module and imaging model guiding (IMG) module. Instead of just modeling one kind of image prior, the HPL module is composed of two subnetworks with different structures, which can effectively learn the complex spatial and spectral priors of the HSI, respectively. Furthermore, a CF strategy is used to establish the connection between the two subnetworks, which further improves the learning performance of the CNN. The IMG module results in solving a strong convex optimization problem, which adaptively optimizes and merges the two features learned by the HPL module by exploiting the imaging model. The two modules are alternately connected to achieve optimal HSI reconstruction performance. Experiments on both the simulated and real data demonstrate that the proposed method can achieve superior spectral reconstruction results with relatively small model size. The code will be available at https://github.com/renweidian.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
冷傲的灵安完成签到,获得积分10
刚刚
小白发布了新的文献求助10
1秒前
1秒前
无私萧完成签到,获得积分20
3秒前
4秒前
哈哈哈哈发布了新的文献求助10
5秒前
勇往直前发布了新的文献求助50
6秒前
寒冷乐驹发布了新的文献求助10
6秒前
学术蝗虫发布了新的文献求助10
6秒前
Lucas应助wil采纳,获得10
7秒前
8秒前
10秒前
10秒前
SHENJINBING完成签到,获得积分10
10秒前
10秒前
voyager完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
击飞完成签到,获得积分10
13秒前
Owen应助其11采纳,获得10
13秒前
研友_ng9Yj8发布了新的文献求助10
14秒前
小白完成签到,获得积分10
15秒前
15秒前
vlots应助SHENJINBING采纳,获得30
15秒前
田李君完成签到,获得积分10
15秒前
香菜统治全世界完成签到,获得积分20
16秒前
16秒前
wang完成签到 ,获得积分10
17秒前
郝宝真发布了新的文献求助10
17秒前
梨里发布了新的文献求助10
17秒前
18秒前
爱啃大虾完成签到,获得积分10
18秒前
wil完成签到,获得积分20
18秒前
开心发布了新的文献求助20
19秒前
其11应助文件撤销了驳回
19秒前
汉堡包应助奋斗夏真采纳,获得10
20秒前
zzd12318完成签到,获得积分10
20秒前
wil发布了新的文献求助10
21秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147946
求助须知:如何正确求助?哪些是违规求助? 2798939
关于积分的说明 7832669
捐赠科研通 2456017
什么是DOI,文献DOI怎么找? 1307045
科研通“疑难数据库(出版商)”最低求助积分说明 628043
版权声明 601620