A population state evaluation-based improvement framework for differential evolution

早熟收敛 差异进化 人口 数学优化 进化算法 计算机科学 趋同(经济学) 元启发式 最优化问题 算法 数学 粒子群优化 人口学 社会学 经济 经济增长
作者
Chunlei Li,Gaoji Sun,Libao Deng,Liyan Qiao,Guoqing Yang
出处
期刊:Information Sciences [Elsevier]
卷期号:629: 15-38 被引量:60
标识
DOI:10.1016/j.ins.2023.01.120
摘要

Differential evolution (DE) is one of the most efficient evolutionary algorithms for solving numerical optimization problems; however, it still suffers from premature convergence and stagnation. To address these problems, we propose a population state evaluation (PSE)-based improvement framework that can be freely embedded into various existing DE variants and population-based metaheuristic algorithms. The PSE framework comprises two population state evaluation mechanisms: one for tracking the optimization state of the population during evolution and the other for evaluating the distribution state of individuals in the population to identify the specific problem (premature convergence or stagnation) encountered by the corresponding algorithm. In addition, we design two intervention operations (dispersion and aggregation) to address premature convergence and stagnation. To verify the effectiveness of the PSE framework, we conduct comparison experiments using nine algorithms (including two basic DE algorithms, six state-of-the-art DE variants, and one non-DE algorithm) to optimize four real-world problems and 59 test functions from the IEEE CEC 2014 and IEEE CEC 2017 testbeds. The experimental results show that the PSE framework can significantly improve the optimization performance of the existing algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助二豆子0采纳,获得10
刚刚
科研通AI5应助Mian采纳,获得10
刚刚
CodeCraft应助酒九采纳,获得10
刚刚
星辰大海应助不喝可乐采纳,获得10
刚刚
刚刚
1秒前
WJ发布了新的文献求助10
1秒前
JamesPei应助落寞的紫山采纳,获得10
1秒前
平常的不平完成签到,获得积分10
2秒前
系统提示发布了新的文献求助10
2秒前
盛yyyy完成签到,获得积分10
2秒前
合适山河发布了新的文献求助10
3秒前
周星星完成签到 ,获得积分10
3秒前
NexusExplorer应助潦草采纳,获得10
3秒前
ZHEN发布了新的文献求助10
4秒前
艺玲发布了新的文献求助10
5秒前
dddddddio完成签到 ,获得积分10
5秒前
5秒前
gaos发布了新的文献求助10
5秒前
坦率的可仁完成签到,获得积分10
6秒前
司徒迎曼完成签到,获得积分10
6秒前
烟花应助激情的一斩采纳,获得10
6秒前
天天快乐应助11采纳,获得10
7秒前
36456657应助八九采纳,获得50
7秒前
潦草完成签到,获得积分20
7秒前
华仔应助科研通管家采纳,获得10
7秒前
freesialll完成签到 ,获得积分10
7秒前
深情安青应助科研通管家采纳,获得30
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得20
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
摇摇晃晃完成签到 ,获得积分10
8秒前
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
贪玩手链应助科研通管家采纳,获得20
8秒前
科研通AI5应助科研通管家采纳,获得30
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740