量子点
纳米纤维
光催化
材料科学
纳米技术
催化作用
化学工程
分解水
可见光谱
化学
光电子学
生物化学
工程类
作者
Fang Wang,Haihong Ma,Fengmei Ren,Zhengfa Zhou,Zhengguo Zhang,Weibing Xu,Shixiong Min
出处
期刊:Nanoscale
[The Royal Society of Chemistry]
日期:2023-01-01
卷期号:15 (7): 3366-3374
被引量:2
摘要
Developing highly active, stable, and cost-efficient cocatalysts for photocatalytic H2 evolution is pivotal in the area of renewable energy conversion. Herein, we present a straightforward, low-temperature phosphidation strategy for in situ exsolving doped Fe ions from natural attapulgite (ATP) nanofibers into a supported Fe2P cocatalyst for the photocatalytic H2 evolution reaction (HER). The resulting Fe2P QDs/ATP features highly dispersed Fe2P QDs with an average size of <2 nm and a strong interfacial interaction between self-exsolved Fe2P QDs and the ATP substrate, thus providing ample and stable active sites for the photocatalytic HER. When employed as a cocatalyst, Fe2P QDs/ATP exhibits superior catalytic activity and notable stability in a molecular system with low-cost xanthene dyes as the photosensitizer under visible light irradiation. More importantly, Fe2P QDs/ATP can also efficiently and stably catalyze the photocatalytic HER when simply combined with various semiconductor photocatalysts (g-C3N4, TiO2, and CdS). This strategy of exsolving transition metal ions from substrates is an effective yet simple approach for the development of highly active supported HER cocatalysts for renewable and clean energy conversion.
科研通智能强力驱动
Strongly Powered by AbleSci AI