Deep Learning-Based Bioactive Therapeutic Peptide Generation and Screening

深度学习 计算生物学 人工智能 计算机科学 生物 化学 生物化学
作者
Haiping Zhang,Konda Mani Saravanan,Yanjie Wei,Yang Jiao,Yang Yang,Yi Pan,Xuli Wu,John Z. H. Zhang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (3): 835-845 被引量:17
标识
DOI:10.1021/acs.jcim.2c01485
摘要

Many bioactive peptides demonstrated therapeutic effects over complicated diseases, such as antiviral, antibacterial, anticancer, etc. It is possible to generate a large number of potentially bioactive peptides using deep learning in a manner analogous to the generation of de novo chemical compounds using the acquired bioactive peptides as a training set. Such generative techniques would be significant for drug development since peptides are much easier and cheaper to synthesize than compounds. Despite the limited availability of deep learning-based peptide-generating models, we have built an LSTM model (called LSTM_Pep) to generate de novo peptides and fine-tuned the model to generate de novo peptides with specific prospective therapeutic benefits. Remarkably, the Antimicrobial Peptide Database has been effectively utilized to generate various kinds of potential active de novo peptides. We proposed a pipeline for screening those generated peptides for a given target and used the main protease of SARS-COV-2 as a proof-of-concept. Moreover, we have developed a deep learning-based protein–peptide prediction model (DeepPep) for rapid screening of the generated peptides for the given targets. Together with the generating model, we have demonstrated that iteratively fine-tuning training, generating, and screening peptides for higher-predicted binding affinity peptides can be achieved. Our work sheds light on developing deep learning-based methods and pipelines to effectively generate and obtain bioactive peptides with a specific therapeutic effect and showcases how artificial intelligence can help discover de novo bioactive peptides that can bind to a particular target.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
梦初醒处完成签到,获得积分10
1秒前
zzz完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
Legend_完成签到 ,获得积分10
3秒前
3秒前
3秒前
小鱼在草里完成签到,获得积分10
4秒前
上官若男应助zz采纳,获得10
4秒前
4秒前
4秒前
炎度发布了新的文献求助10
4秒前
Rouadou完成签到 ,获得积分10
4秒前
MOhy发布了新的文献求助10
4秒前
wwec发布了新的文献求助10
5秒前
zzz发布了新的文献求助10
5秒前
Soche完成签到,获得积分10
5秒前
5秒前
1+1完成签到,获得积分0
6秒前
mit完成签到 ,获得积分0
6秒前
6秒前
奋斗雁枫发布了新的文献求助10
7秒前
wenlong完成签到 ,获得积分10
7秒前
sns八丘完成签到,获得积分10
8秒前
8秒前
9秒前
1+1发布了新的文献求助10
9秒前
ZYLZYL发布了新的文献求助10
9秒前
9秒前
yumemakase发布了新的文献求助10
9秒前
All完成签到,获得积分10
9秒前
萝卜丁完成签到 ,获得积分10
9秒前
9秒前
炙热的夜雪完成签到 ,获得积分10
9秒前
10秒前
葵魁发布了新的文献求助10
11秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155426
求助须知:如何正确求助?哪些是违规求助? 2806513
关于积分的说明 7869622
捐赠科研通 2464807
什么是DOI,文献DOI怎么找? 1311979
科研通“疑难数据库(出版商)”最低求助积分说明 629783
版权声明 601880