线性化
计算机科学
控制理论(社会学)
非线性系统
多智能体系统
趋同(经济学)
转化(遗传学)
模型预测控制
功能(生物学)
对数
数学优化
数学
控制(管理)
人工智能
量子力学
进化生物学
生物
基因
物理
数学分析
生物化学
经济
经济增长
化学
标识
DOI:10.1109/ccdc58219.2023.10326489
摘要
This article is devoted to investigating model-free adaptive predictive control scheme based on prescribed performance for nonlinear multiagent systems (MASs). A novel tangent-type error transformation function is proposed for mapping performance indicator from constrained to unconstrained. Compared with the common logarithmic-type error transformation function, the computational complexity is reduced. Meanwhile, the convergence of distributed measurement error among agents to a predefined area is achieved. Furthermore, the proposed scheme is data-driven method based on compact form dynamic linearization without any model information. Theoretical analysis ensures the consensus of multiple agents and the analysis result is verified by simulation.
科研通智能强力驱动
Strongly Powered by AbleSci AI