Supervised-unsupervised combined transformer for spectral compressive imaging reconstruction

计算机科学 高光谱成像 人工智能 先验概率 模式识别(心理学) 反问题 特征学习 无监督学习 特征(语言学) 监督学习 解码方法 压缩传感 光学(聚焦) 人工神经网络 算法 数学 贝叶斯概率 数学分析 语言学 哲学 物理 光学
作者
Han Zhou,Yusheng Lian,Jin Li,Zilong Liu,Xuheng Cao,Chao Ma
出处
期刊:Optics and Lasers in Engineering [Elsevier]
卷期号:175: 108030-108030
标识
DOI:10.1016/j.optlaseng.2024.108030
摘要

To solve the low spatial and/or temporal resolution problem which the conventional hyperspectral cameras often suffer from, spectral compressive imaging systems (SCI) have attracted more attention recently. Recovering a hyperspectral image (HSI) from its corresponding 2D coded image is an ill-posed inverse problem, and learning accurate prior from HSI and 2D coded image is essential to solve this inverse problem. Existing methods only use supervised networks that focus on learning generalized prior from training datasets, or only use unsupervised networks that focus on learning specific prior from 2D coded image, resulting in the inability to learn both generalized and specific priors. Also, when learning the priors, existing methods cannot simultaneously give consideration to both global and local scales, as well as both spatial and spectral dimensions. To cope with this problem, in this paper, we propose a Supervised-Unsupervised Combined Transformer Network (SUCTNet) composed by a supervised Spatio-spectral Transformer network (SSTNet) and an Unsupervised Multi-level Feature Refinement network (UMFRNet). Specifically, we first develop the SSTNet to learn generalized prior and obtain a preliminary HSI. In SSTNet, the proposed spatial encoding and spectral decoding network architecture enables it to simultaneously consider both spatial and spectral dimensions, and a proposed Global and Local Multi head Self Attention block (GL-MSA) enables it simultaneously to consider both global and local scales. Then, the preliminary HSI is fed into the proposed UMFRNet to learn specific prior and obtain the target HSI. In UMFRNet, a proposed multi-level feature refinement mechanism and the physical imaging model of SCI are used to improve reconstruction accuracy and generalization performance. Extensive experiments show that our method significantly outperforms state-of-the-art (SOTA) methods on simulated and real datasets. Codes will be available at https://github.com/Vzhouhan/SUCTNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
椎名hirofumi完成签到 ,获得积分10
刚刚
刚刚
刚刚
Mida完成签到,获得积分10
刚刚
小马甲应助陶醉的灵枫采纳,获得10
刚刚
pp996完成签到,获得积分10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
小雨完成签到 ,获得积分10
1秒前
李健应助科研通管家采纳,获得10
1秒前
善学以致用应助小秦采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
dew应助科研通管家采纳,获得10
1秒前
元正发布了新的文献求助10
1秒前
ilihe应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
欢喜发布了新的文献求助30
1秒前
flyboy应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得30
2秒前
Hello应助科研通管家采纳,获得10
2秒前
无限寻雪完成签到 ,获得积分10
2秒前
Ava应助科研通管家采纳,获得30
2秒前
烟花应助科研通管家采纳,获得10
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
果粒橙应助科研通管家采纳,获得10
2秒前
GPTea应助科研通管家采纳,获得20
2秒前
Akim应助科研通管家采纳,获得10
2秒前
2秒前
桐桐应助房山芙采纳,获得10
3秒前
852应助白开水采纳,获得10
3秒前
嗯嗯嗯嗯发布了新的文献求助10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624445
求助须知:如何正确求助?哪些是违规求助? 4710318
关于积分的说明 14950073
捐赠科研通 4778363
什么是DOI,文献DOI怎么找? 2553244
邀请新用户注册赠送积分活动 1515179
关于科研通互助平台的介绍 1475520