已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Supervised-unsupervised combined transformer for spectral compressive imaging reconstruction

计算机科学 高光谱成像 人工智能 先验概率 模式识别(心理学) 反问题 特征学习 无监督学习 特征(语言学) 监督学习 解码方法 压缩传感 光学(聚焦) 人工神经网络 算法 数学 贝叶斯概率 数学分析 语言学 哲学 物理 光学
作者
Han Zhou,Yusheng Lian,Jin Li,Zilong Liu,Xuheng Cao,Chao Ma
出处
期刊:Optics and Lasers in Engineering [Elsevier]
卷期号:175: 108030-108030
标识
DOI:10.1016/j.optlaseng.2024.108030
摘要

To solve the low spatial and/or temporal resolution problem which the conventional hyperspectral cameras often suffer from, spectral compressive imaging systems (SCI) have attracted more attention recently. Recovering a hyperspectral image (HSI) from its corresponding 2D coded image is an ill-posed inverse problem, and learning accurate prior from HSI and 2D coded image is essential to solve this inverse problem. Existing methods only use supervised networks that focus on learning generalized prior from training datasets, or only use unsupervised networks that focus on learning specific prior from 2D coded image, resulting in the inability to learn both generalized and specific priors. Also, when learning the priors, existing methods cannot simultaneously give consideration to both global and local scales, as well as both spatial and spectral dimensions. To cope with this problem, in this paper, we propose a Supervised-Unsupervised Combined Transformer Network (SUCTNet) composed by a supervised Spatio-spectral Transformer network (SSTNet) and an Unsupervised Multi-level Feature Refinement network (UMFRNet). Specifically, we first develop the SSTNet to learn generalized prior and obtain a preliminary HSI. In SSTNet, the proposed spatial encoding and spectral decoding network architecture enables it to simultaneously consider both spatial and spectral dimensions, and a proposed Global and Local Multi head Self Attention block (GL-MSA) enables it simultaneously to consider both global and local scales. Then, the preliminary HSI is fed into the proposed UMFRNet to learn specific prior and obtain the target HSI. In UMFRNet, a proposed multi-level feature refinement mechanism and the physical imaging model of SCI are used to improve reconstruction accuracy and generalization performance. Extensive experiments show that our method significantly outperforms state-of-the-art (SOTA) methods on simulated and real datasets. Codes will be available at https://github.com/Vzhouhan/SUCTNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hymmnos关注了科研通微信公众号
2秒前
4秒前
kenti2023完成签到 ,获得积分10
5秒前
Aspirin完成签到 ,获得积分10
5秒前
Brain完成签到,获得积分10
6秒前
9秒前
七彩琉璃公主完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
12秒前
sirius应助hhhhhh采纳,获得10
13秒前
顺利白竹完成签到 ,获得积分10
13秒前
善良的西瓜完成签到 ,获得积分10
13秒前
露露发布了新的文献求助10
14秒前
16秒前
TOMMY233发布了新的文献求助10
17秒前
XxxxxxENT完成签到,获得积分10
18秒前
18秒前
19秒前
我还想有很多头发完成签到,获得积分20
19秒前
wf完成签到,获得积分10
19秒前
小马甲应助科研通管家采纳,获得10
20秒前
dilli完成签到 ,获得积分10
21秒前
21秒前
hymmnos发布了新的文献求助10
22秒前
23秒前
23秒前
23秒前
赘婿应助沐偶人采纳,获得10
23秒前
zhouhao完成签到 ,获得积分10
23秒前
24秒前
24秒前
nanda发布了新的文献求助10
26秒前
27秒前
29秒前
30秒前
30秒前
30秒前
pphe发布了新的文献求助10
30秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146623
求助须知:如何正确求助?哪些是违规求助? 2797931
关于积分的说明 7826191
捐赠科研通 2454463
什么是DOI,文献DOI怎么找? 1306280
科研通“疑难数据库(出版商)”最低求助积分说明 627692
版权声明 601522