Supervised-unsupervised combined transformer for spectral compressive imaging reconstruction

计算机科学 高光谱成像 人工智能 先验概率 模式识别(心理学) 反问题 特征学习 无监督学习 特征(语言学) 监督学习 解码方法 压缩传感 光学(聚焦) 人工神经网络 算法 数学 贝叶斯概率 数学分析 语言学 哲学 物理 光学
作者
Han Zhou,Yusheng Lian,Jin Li,Zilong Liu,Xuheng Cao,Chao Ma
出处
期刊:Optics and Lasers in Engineering [Elsevier]
卷期号:175: 108030-108030
标识
DOI:10.1016/j.optlaseng.2024.108030
摘要

To solve the low spatial and/or temporal resolution problem which the conventional hyperspectral cameras often suffer from, spectral compressive imaging systems (SCI) have attracted more attention recently. Recovering a hyperspectral image (HSI) from its corresponding 2D coded image is an ill-posed inverse problem, and learning accurate prior from HSI and 2D coded image is essential to solve this inverse problem. Existing methods only use supervised networks that focus on learning generalized prior from training datasets, or only use unsupervised networks that focus on learning specific prior from 2D coded image, resulting in the inability to learn both generalized and specific priors. Also, when learning the priors, existing methods cannot simultaneously give consideration to both global and local scales, as well as both spatial and spectral dimensions. To cope with this problem, in this paper, we propose a Supervised-Unsupervised Combined Transformer Network (SUCTNet) composed by a supervised Spatio-spectral Transformer network (SSTNet) and an Unsupervised Multi-level Feature Refinement network (UMFRNet). Specifically, we first develop the SSTNet to learn generalized prior and obtain a preliminary HSI. In SSTNet, the proposed spatial encoding and spectral decoding network architecture enables it to simultaneously consider both spatial and spectral dimensions, and a proposed Global and Local Multi head Self Attention block (GL-MSA) enables it simultaneously to consider both global and local scales. Then, the preliminary HSI is fed into the proposed UMFRNet to learn specific prior and obtain the target HSI. In UMFRNet, a proposed multi-level feature refinement mechanism and the physical imaging model of SCI are used to improve reconstruction accuracy and generalization performance. Extensive experiments show that our method significantly outperforms state-of-the-art (SOTA) methods on simulated and real datasets. Codes will be available at https://github.com/Vzhouhan/SUCTNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
搜集达人应助得闲采纳,获得10
1秒前
1秒前
1秒前
2秒前
2秒前
沉静的梦秋完成签到,获得积分10
2秒前
2秒前
一寒发布了新的文献求助10
2秒前
IVY发布了新的文献求助50
3秒前
无敌发布了新的文献求助10
3秒前
虚幻豌豆发布了新的文献求助10
3秒前
3秒前
wang完成签到,获得积分10
3秒前
4秒前
4秒前
SICHEN完成签到,获得积分10
4秒前
小菜一碟发布了新的文献求助10
5秒前
森夏完成签到,获得积分10
5秒前
5秒前
5秒前
Angie_qian发布了新的文献求助10
5秒前
李爱国应助倩倩采纳,获得10
5秒前
意未清发布了新的文献求助10
5秒前
李白完成签到,获得积分10
5秒前
6秒前
专注的问寒应助zhan采纳,获得20
6秒前
在水一方应助烫个麻辣烫采纳,获得10
6秒前
Spike发布了新的文献求助10
6秒前
kk发布了新的文献求助10
7秒前
chen发布了新的文献求助10
7秒前
茹茹发布了新的文献求助10
7秒前
xh96完成签到,获得积分10
7秒前
微笑雁风完成签到,获得积分20
8秒前
8秒前
8秒前
秦长春完成签到,获得积分20
8秒前
光电发布了新的文献求助10
9秒前
烟花应助张yang采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667969
求助须知:如何正确求助?哪些是违规求助? 4888527
关于积分的说明 15122487
捐赠科研通 4826782
什么是DOI,文献DOI怎么找? 2584295
邀请新用户注册赠送积分活动 1538188
关于科研通互助平台的介绍 1496482