Supervised-unsupervised combined transformer for spectral compressive imaging reconstruction

计算机科学 高光谱成像 人工智能 先验概率 模式识别(心理学) 反问题 特征学习 无监督学习 特征(语言学) 监督学习 解码方法 压缩传感 光学(聚焦) 人工神经网络 算法 数学 贝叶斯概率 数学分析 语言学 哲学 物理 光学
作者
Han Zhou,Yusheng Lian,Jin Li,Zilong Liu,Xuheng Cao,Chao Ma
出处
期刊:Optics and Lasers in Engineering [Elsevier]
卷期号:175: 108030-108030
标识
DOI:10.1016/j.optlaseng.2024.108030
摘要

To solve the low spatial and/or temporal resolution problem which the conventional hyperspectral cameras often suffer from, spectral compressive imaging systems (SCI) have attracted more attention recently. Recovering a hyperspectral image (HSI) from its corresponding 2D coded image is an ill-posed inverse problem, and learning accurate prior from HSI and 2D coded image is essential to solve this inverse problem. Existing methods only use supervised networks that focus on learning generalized prior from training datasets, or only use unsupervised networks that focus on learning specific prior from 2D coded image, resulting in the inability to learn both generalized and specific priors. Also, when learning the priors, existing methods cannot simultaneously give consideration to both global and local scales, as well as both spatial and spectral dimensions. To cope with this problem, in this paper, we propose a Supervised-Unsupervised Combined Transformer Network (SUCTNet) composed by a supervised Spatio-spectral Transformer network (SSTNet) and an Unsupervised Multi-level Feature Refinement network (UMFRNet). Specifically, we first develop the SSTNet to learn generalized prior and obtain a preliminary HSI. In SSTNet, the proposed spatial encoding and spectral decoding network architecture enables it to simultaneously consider both spatial and spectral dimensions, and a proposed Global and Local Multi head Self Attention block (GL-MSA) enables it simultaneously to consider both global and local scales. Then, the preliminary HSI is fed into the proposed UMFRNet to learn specific prior and obtain the target HSI. In UMFRNet, a proposed multi-level feature refinement mechanism and the physical imaging model of SCI are used to improve reconstruction accuracy and generalization performance. Extensive experiments show that our method significantly outperforms state-of-the-art (SOTA) methods on simulated and real datasets. Codes will be available at https://github.com/Vzhouhan/SUCTNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
用心若镜2发布了新的文献求助10
1秒前
Meng发布了新的文献求助10
2秒前
Xiaohui_Yu完成签到,获得积分10
2秒前
Li818发布了新的文献求助10
3秒前
郭郭发布了新的文献求助10
4秒前
4秒前
5秒前
shh完成签到,获得积分10
7秒前
7秒前
8秒前
9秒前
10秒前
不安的松完成签到 ,获得积分10
10秒前
10秒前
wxy发布了新的文献求助10
12秒前
destiny关注了科研通微信公众号
12秒前
彭于晏应助袅袅采纳,获得10
12秒前
无限青柏发布了新的文献求助10
13秒前
畅快的胡萝卜完成签到,获得积分10
13秒前
shu发布了新的文献求助10
13秒前
上官若男应助llya采纳,获得10
14秒前
DreamerOj发布了新的文献求助10
14秒前
14秒前
英姑应助水123采纳,获得10
15秒前
用心若镜2完成签到,获得积分10
15秒前
桐桐应助money采纳,获得10
15秒前
cxy发布了新的文献求助10
15秒前
theinu完成签到,获得积分10
17秒前
huang完成签到,获得积分10
18秒前
shuiyi发布了新的文献求助10
20秒前
Criminology34应助无限青柏采纳,获得10
20秒前
LLL完成签到,获得积分10
21秒前
maomao完成签到,获得积分10
21秒前
Lucas应助csl采纳,获得10
21秒前
yukang应助Amber采纳,获得10
22秒前
优美紫槐应助Zhuzhu采纳,获得20
23秒前
开朗完成签到,获得积分20
23秒前
七笙关注了科研通微信公众号
23秒前
Alex完成签到 ,获得积分10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603799
求助须知:如何正确求助?哪些是违规求助? 4688754
关于积分的说明 14855835
捐赠科研通 4695101
什么是DOI,文献DOI怎么找? 2540987
邀请新用户注册赠送积分活动 1507143
关于科研通互助平台的介绍 1471814