Supervised-unsupervised combined transformer for spectral compressive imaging reconstruction

计算机科学 高光谱成像 人工智能 先验概率 模式识别(心理学) 反问题 特征学习 无监督学习 特征(语言学) 监督学习 解码方法 压缩传感 光学(聚焦) 人工神经网络 算法 数学 贝叶斯概率 数学分析 语言学 哲学 物理 光学
作者
Han Zhou,Yusheng Lian,Jin Li,Zilong Liu,Xuheng Cao,Chao Ma
出处
期刊:Optics and Lasers in Engineering [Elsevier]
卷期号:175: 108030-108030
标识
DOI:10.1016/j.optlaseng.2024.108030
摘要

To solve the low spatial and/or temporal resolution problem which the conventional hyperspectral cameras often suffer from, spectral compressive imaging systems (SCI) have attracted more attention recently. Recovering a hyperspectral image (HSI) from its corresponding 2D coded image is an ill-posed inverse problem, and learning accurate prior from HSI and 2D coded image is essential to solve this inverse problem. Existing methods only use supervised networks that focus on learning generalized prior from training datasets, or only use unsupervised networks that focus on learning specific prior from 2D coded image, resulting in the inability to learn both generalized and specific priors. Also, when learning the priors, existing methods cannot simultaneously give consideration to both global and local scales, as well as both spatial and spectral dimensions. To cope with this problem, in this paper, we propose a Supervised-Unsupervised Combined Transformer Network (SUCTNet) composed by a supervised Spatio-spectral Transformer network (SSTNet) and an Unsupervised Multi-level Feature Refinement network (UMFRNet). Specifically, we first develop the SSTNet to learn generalized prior and obtain a preliminary HSI. In SSTNet, the proposed spatial encoding and spectral decoding network architecture enables it to simultaneously consider both spatial and spectral dimensions, and a proposed Global and Local Multi head Self Attention block (GL-MSA) enables it simultaneously to consider both global and local scales. Then, the preliminary HSI is fed into the proposed UMFRNet to learn specific prior and obtain the target HSI. In UMFRNet, a proposed multi-level feature refinement mechanism and the physical imaging model of SCI are used to improve reconstruction accuracy and generalization performance. Extensive experiments show that our method significantly outperforms state-of-the-art (SOTA) methods on simulated and real datasets. Codes will be available at https://github.com/Vzhouhan/SUCTNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
2秒前
小蘑菇应助范恒采纳,获得10
2秒前
LucyMartinez发布了新的文献求助10
3秒前
3秒前
3秒前
香蕉觅云应助wangyamei采纳,获得10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
4秒前
aaaaa发布了新的文献求助10
5秒前
6秒前
6秒前
cwy完成签到,获得积分10
6秒前
wqwqwq完成签到,获得积分10
7秒前
Hello应助glacial采纳,获得10
8秒前
calico发布了新的文献求助10
8秒前
杨慧发布了新的文献求助10
8秒前
务实的河马完成签到,获得积分10
9秒前
Lucas应助文艺晓亦采纳,获得10
11秒前
11秒前
chen完成签到 ,获得积分10
11秒前
zbr完成签到 ,获得积分10
12秒前
13秒前
小蘑菇应助不许焦绿o采纳,获得10
13秒前
丘比特应助笑点低歌曲采纳,获得10
14秒前
哈哈哈发布了新的文献求助10
14秒前
訫藍完成签到,获得积分10
14秒前
唐亿倩完成签到,获得积分10
14秒前
大模型应助fddd采纳,获得10
14秒前
.....完成签到,获得积分20
15秒前
王顺顺发布了新的文献求助10
15秒前
HRL完成签到,获得积分10
16秒前
17秒前
杨慧完成签到,获得积分10
17秒前
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465317
求助须知:如何正确求助?哪些是违规求助? 4569688
关于积分的说明 14320442
捐赠科研通 4496086
什么是DOI,文献DOI怎么找? 2463069
邀请新用户注册赠送积分活动 1452085
关于科研通互助平台的介绍 1427268