亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

When Process Analysis Technology Meets Transfer Learning: A Model Transfer Strategy Between Different Spectrometers for Quantitative Analysis

预处理器 校准 人工智能 数据预处理 极限学习机 计算机科学 算法 主成分分析 机器学习 数学 统计 人工神经网络
作者
Yan Yu,Meibao Yao,Jipeng Huang,Xueming Xiao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-19 被引量:6
标识
DOI:10.1109/tim.2024.3353273
摘要

With the increase in the number of types of spectrometers in use, calibration models cannot be shared among different instruments, however, this problem can be solved via calibration transfer (CT). In this study, a variety of modern process analysis technology (PAT) data are taken as the research object. After preprocessing the spectra data using principal component analysis (PCA) and cubic spline interpolation, the TrAdaBoost algorithm in transfer learning combined with extreme learning machine (ELM), i.e., TrAdaBoost-ELM, is used to transfer the master model to slave instruments and to make comparisons with the Transfer via an Extreme learning machine Auto-encoder Method (TEAM) and the semi-supervised parameter free framework for calibration enhancement (SS-PFCE) method. After the master model is transferred by the TrAdaBoost-ELM algorithm for the prediction dataset of slave instruments, the mean coefficient of determination of prediction (R p 2 ) increases from 0.7843 to 0.8707, and the mean root mean square error of prediction (RMSEP) decreases from 2.7508 to 2.3112. Furthermore, variable combination population analysis (VCPA) in combination with a genetic algorithm (VCPA-IGA) were used to select characteristic wavelengths in molecular and atomic spectra, respectively. For the same type of laser-induced breakdown spectroscopy (LIBS) instruments K1 and K2, after processing by the VCPA-IGA algorithm, the LIBS calibration model established on K1 was transferred successfully to K2, and for the major elements, the mean R p 2 = 0.9563 and the mean RMSEP = 1.3796. After processing by the VCPA algorithm, the near-infrared (NIR) model for instrument L was transferred to a different instrument J, and the prediction results were R p 2 = 0.9110 and RMSEP = 0.4044 °Brix. The results demonstrated that an appropriate variable selection method combined with the TrAdaBoost-ELM algorithm can be effectively used for CT for spectrometers of the same and different types, thus achieving model sharing between different spectrometers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
carl发布了新的文献求助10
5秒前
万默完成签到 ,获得积分10
9秒前
9秒前
KDS发布了新的文献求助10
10秒前
DrJiang完成签到,获得积分10
11秒前
16秒前
在水一方应助KDS采纳,获得10
20秒前
21秒前
29秒前
hywang完成签到,获得积分10
32秒前
hywang发布了新的文献求助10
35秒前
36秒前
包驳发布了新的文献求助10
45秒前
包驳完成签到,获得积分20
55秒前
58秒前
TEN发布了新的文献求助10
1分钟前
伊森xay发布了新的文献求助10
1分钟前
TEN完成签到,获得积分10
1分钟前
1分钟前
伊森xay完成签到,获得积分10
1分钟前
精灵夜雨发布了新的文献求助10
1分钟前
ly发布了新的文献求助10
1分钟前
共享精神应助ly采纳,获得10
1分钟前
1分钟前
玄同发布了新的文献求助10
1分钟前
1分钟前
玄同完成签到,获得积分10
2分钟前
俭朴蜜蜂完成签到 ,获得积分10
2分钟前
csz完成签到,获得积分20
3分钟前
3分钟前
csz发布了新的文献求助10
3分钟前
hhhhh完成签到,获得积分10
4分钟前
Lucas应助兴奋元冬采纳,获得10
4分钟前
mizore完成签到,获得积分20
4分钟前
4分钟前
hhhhh发布了新的文献求助20
5分钟前
5分钟前
efren1806完成签到,获得积分10
5分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555748
求助须知:如何正确求助?哪些是违规求助? 3131355
关于积分的说明 9390876
捐赠科研通 2831075
什么是DOI,文献DOI怎么找? 1556317
邀请新用户注册赠送积分活动 726502
科研通“疑难数据库(出版商)”最低求助积分说明 715803