亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparing univariate filtration preceding and succeeding PLS-DA analysis on the differential variables/metabolites identified from untargeted LC-MS metabolomics data

单变量 化学 假阳性悖论 单变量分析 代谢组学 色谱法 多元统计 多元分析 统计 数学
作者
Suyun Xu,Caihong Bai,Yanli Chen,Lingling Yu,Wenjun Wu,Kaifeng Hu
出处
期刊:Analytica Chimica Acta [Elsevier BV]
卷期号:1287: 342103-342103 被引量:40
标识
DOI:10.1016/j.aca.2023.342103
摘要

PLS-DA of high-dimensional metabolomics data is frequently employed to capture the most pertinent features to sample classification. But the presence of numerous insignificant input features could distort the PLS-DA model, blow up and scramble the selected differential features. Usually, univariate filtration is subsequently complemented to refine the selected features, but often giving unstable results. Whereas by precluding insignificant features through univariate data prefiltration assessed by FDR adjusted p-value, PLS-DA can generate more stable and reliable differential features. We explored and compared these two data analysis procedures to gain insights into the underlying mechanisms responsible for the disparate results. The effect of univariate data filtration preceding and succeeding PLS-DA analysis on the identified discriminative features/metabolites was investigated using LC-MS data acquired on the samples of human serum and C. elegans extracts, with and without metabolite standards spiked to simulate the treated and control groups of biological samples. It was shown that the univariate data prefiltration before PLS-DA usually gave less but more stable and likely more reliable and meaningful differential features, while PLS-DA applied directly to the original data could be affected by the presence of insignificant features and orthogonal noise. Large number of insignificant variables and orthogonal noise could distort the generated PLS-DA model and affect the p(corr) value, and artificially inflate the calculated VIP values of relevant features due to the increased total number of input features for model construction, thus leading to more false positives selected by the conventional VIP threshold of 1.0. Univariate data filtration preceding PLS-DA was important for the identification of reliable differential features if using a conventional threshold of VIP of 1.0. Presence of insignificant features could distort the PLS-DA model and inflate VIP values. Appropriate VIP threshold is associated with the numbers of input features and the model components. For PLS-DA without univariate prefiltration, threshold of VIP larger than 1.0 is recommended for the selection of discriminative features to reduce the false positives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BowieHuang应助嘻嘻哈哈采纳,获得90
3秒前
BowieHuang应助嘻嘻哈哈采纳,获得90
3秒前
BowieHuang应助嘻嘻哈哈采纳,获得90
3秒前
BowieHuang应助嘻嘻哈哈采纳,获得80
3秒前
汉堡包应助典雅的俊驰采纳,获得10
4秒前
18秒前
caca完成签到,获得积分0
18秒前
鹭江发布了新的文献求助10
24秒前
嘻嘻哈哈发布了新的文献求助80
25秒前
种下梧桐树完成签到 ,获得积分10
28秒前
30秒前
36秒前
37秒前
cool_随风发布了新的文献求助10
42秒前
47秒前
47秒前
moon发布了新的文献求助10
50秒前
Criminology34应助cool_随风采纳,获得10
58秒前
moon完成签到,获得积分10
1分钟前
鹭江完成签到,获得积分10
1分钟前
嘟嘟哒完成签到,获得积分10
1分钟前
1分钟前
1分钟前
忘忧Aquarius完成签到,获得积分10
1分钟前
mammer完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
笔墨纸砚完成签到 ,获得积分10
1分钟前
嘻嘻哈哈发布了新的文献求助90
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
嘻嘻哈哈应助舒服的觅夏采纳,获得10
2分钟前
zzzzzzz发布了新的文献求助10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5254321
求助须知:如何正确求助?哪些是违规求助? 4417277
关于积分的说明 13751164
捐赠科研通 4289914
什么是DOI,文献DOI怎么找? 2353881
邀请新用户注册赠送积分活动 1350523
关于科研通互助平台的介绍 1310666