Comparing univariate filtration preceding and succeeding PLS-DA analysis on the differential variables/metabolites identified from untargeted LC-MS metabolomics data

单变量 化学 假阳性悖论 单变量分析 代谢组学 色谱法 多元统计 多元分析 统计 数学
作者
Suyun Xu,Caihong Bai,Yanli Chen,Lingling Yu,Wenjun Wu,Kaifeng Hu
出处
期刊:Analytica Chimica Acta [Elsevier BV]
卷期号:1287: 342103-342103 被引量:40
标识
DOI:10.1016/j.aca.2023.342103
摘要

PLS-DA of high-dimensional metabolomics data is frequently employed to capture the most pertinent features to sample classification. But the presence of numerous insignificant input features could distort the PLS-DA model, blow up and scramble the selected differential features. Usually, univariate filtration is subsequently complemented to refine the selected features, but often giving unstable results. Whereas by precluding insignificant features through univariate data prefiltration assessed by FDR adjusted p-value, PLS-DA can generate more stable and reliable differential features. We explored and compared these two data analysis procedures to gain insights into the underlying mechanisms responsible for the disparate results. The effect of univariate data filtration preceding and succeeding PLS-DA analysis on the identified discriminative features/metabolites was investigated using LC-MS data acquired on the samples of human serum and C. elegans extracts, with and without metabolite standards spiked to simulate the treated and control groups of biological samples. It was shown that the univariate data prefiltration before PLS-DA usually gave less but more stable and likely more reliable and meaningful differential features, while PLS-DA applied directly to the original data could be affected by the presence of insignificant features and orthogonal noise. Large number of insignificant variables and orthogonal noise could distort the generated PLS-DA model and affect the p(corr) value, and artificially inflate the calculated VIP values of relevant features due to the increased total number of input features for model construction, thus leading to more false positives selected by the conventional VIP threshold of 1.0. Univariate data filtration preceding PLS-DA was important for the identification of reliable differential features if using a conventional threshold of VIP of 1.0. Presence of insignificant features could distort the PLS-DA model and inflate VIP values. Appropriate VIP threshold is associated with the numbers of input features and the model components. For PLS-DA without univariate prefiltration, threshold of VIP larger than 1.0 is recommended for the selection of discriminative features to reduce the false positives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梁业发布了新的文献求助10
刚刚
搜集达人应助追寻的若枫采纳,获得10
2秒前
鲜艳的棒棒糖完成签到,获得积分10
2秒前
墨染完成签到 ,获得积分10
2秒前
2秒前
2秒前
科研通AI6应助zhao采纳,获得10
3秒前
英俊的铭应助风清扬采纳,获得10
4秒前
4秒前
5秒前
5秒前
yangyog完成签到,获得积分10
5秒前
小情绪应助laoji采纳,获得10
5秒前
6秒前
6秒前
6秒前
无花果应助aceman采纳,获得10
7秒前
get发布了新的文献求助10
7秒前
7秒前
科研通AI5应助nine2652采纳,获得10
7秒前
hnx1005完成签到 ,获得积分10
9秒前
风清扬发布了新的文献求助10
9秒前
9秒前
11秒前
11秒前
lalala发布了新的文献求助10
11秒前
甜滋滋发布了新的文献求助10
11秒前
溯溯完成签到 ,获得积分10
11秒前
biubiu完成签到,获得积分20
11秒前
迪士尼在逃公主1101号完成签到,获得积分20
11秒前
12秒前
第一成一发布了新的文献求助10
12秒前
田様应助木子李采纳,获得10
12秒前
Sylvia完成签到 ,获得积分10
12秒前
沉淀发布了新的文献求助10
13秒前
Yjx完成签到,获得积分20
13秒前
13秒前
鼻揩了转去应助彩色遥采纳,获得10
14秒前
fancy发布了新的文献求助10
15秒前
打工羊完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 1200
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4943311
求助须知:如何正确求助?哪些是违规求助? 4208499
关于积分的说明 13083053
捐赠科研通 3987953
什么是DOI,文献DOI怎么找? 2183354
邀请新用户注册赠送积分活动 1198954
关于科研通互助平台的介绍 1111530