亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparing univariate filtration preceding and succeeding PLS-DA analysis on the differential variables/metabolites identified from untargeted LC-MS metabolomics data

单变量 化学 假阳性悖论 单变量分析 代谢组学 色谱法 多元统计 多元分析 统计 数学
作者
Suyun Xu,Caihong Bai,Yanli Chen,Lingling Yu,Wenjun Wu,Kaifeng Hu
出处
期刊:Analytica Chimica Acta [Elsevier BV]
卷期号:1287: 342103-342103 被引量:28
标识
DOI:10.1016/j.aca.2023.342103
摘要

PLS-DA of high-dimensional metabolomics data is frequently employed to capture the most pertinent features to sample classification. But the presence of numerous insignificant input features could distort the PLS-DA model, blow up and scramble the selected differential features. Usually, univariate filtration is subsequently complemented to refine the selected features, but often giving unstable results. Whereas by precluding insignificant features through univariate data prefiltration assessed by FDR adjusted p-value, PLS-DA can generate more stable and reliable differential features. We explored and compared these two data analysis procedures to gain insights into the underlying mechanisms responsible for the disparate results. The effect of univariate data filtration preceding and succeeding PLS-DA analysis on the identified discriminative features/metabolites was investigated using LC-MS data acquired on the samples of human serum and C. elegans extracts, with and without metabolite standards spiked to simulate the treated and control groups of biological samples. It was shown that the univariate data prefiltration before PLS-DA usually gave less but more stable and likely more reliable and meaningful differential features, while PLS-DA applied directly to the original data could be affected by the presence of insignificant features and orthogonal noise. Large number of insignificant variables and orthogonal noise could distort the generated PLS-DA model and affect the p(corr) value, and artificially inflate the calculated VIP values of relevant features due to the increased total number of input features for model construction, thus leading to more false positives selected by the conventional VIP threshold of 1.0. Univariate data filtration preceding PLS-DA was important for the identification of reliable differential features if using a conventional threshold of VIP of 1.0. Presence of insignificant features could distort the PLS-DA model and inflate VIP values. Appropriate VIP threshold is associated with the numbers of input features and the model components. For PLS-DA without univariate prefiltration, threshold of VIP larger than 1.0 is recommended for the selection of discriminative features to reduce the false positives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助勇往直前采纳,获得10
17秒前
俭朴蜜蜂完成签到 ,获得积分10
25秒前
39秒前
勇往直前发布了新的文献求助10
44秒前
科研完成签到 ,获得积分10
1分钟前
1分钟前
小蘑菇应助科研通管家采纳,获得10
2分钟前
Ava应助科研通管家采纳,获得10
2分钟前
2分钟前
缺粥完成签到 ,获得积分10
2分钟前
河鲸完成签到 ,获得积分10
2分钟前
2分钟前
IgorLi完成签到,获得积分10
2分钟前
3分钟前
feng发布了新的文献求助10
3分钟前
胖小羊完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
5分钟前
自己发布了新的文献求助10
5分钟前
5分钟前
5分钟前
5分钟前
小二郎应助自己采纳,获得10
5分钟前
wang0626完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
隐形曼青应助科研通管家采纳,获得10
6分钟前
punch完成签到 ,获得积分10
6分钟前
世隐完成签到,获得积分10
6分钟前
6分钟前
7分钟前
Lucas应助科研通管家采纳,获得10
8分钟前
完美世界应助科研通管家采纳,获得10
8分钟前
8分钟前
8分钟前
CCC1230发布了新的文献求助10
8分钟前
wk发布了新的文献求助10
8分钟前
优雅的平安完成签到 ,获得积分10
8分钟前
8分钟前
8分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965717
求助须知:如何正确求助?哪些是违规求助? 3510950
关于积分的说明 11155694
捐赠科研通 3245416
什么是DOI,文献DOI怎么找? 1792891
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804216