Comparing univariate filtration preceding and succeeding PLS-DA analysis on the differential variables/metabolites identified from untargeted LC-MS metabolomics data

单变量 化学 假阳性悖论 单变量分析 代谢组学 色谱法 多元统计 多元分析 统计 数学
作者
Suyun Xu,Caihong Bai,Yanli Chen,Lingling Yu,Wenjun Wu,Kaifeng Hu
出处
期刊:Analytica Chimica Acta [Elsevier]
卷期号:1287: 342103-342103 被引量:47
标识
DOI:10.1016/j.aca.2023.342103
摘要

PLS-DA of high-dimensional metabolomics data is frequently employed to capture the most pertinent features to sample classification. But the presence of numerous insignificant input features could distort the PLS-DA model, blow up and scramble the selected differential features. Usually, univariate filtration is subsequently complemented to refine the selected features, but often giving unstable results. Whereas by precluding insignificant features through univariate data prefiltration assessed by FDR adjusted p-value, PLS-DA can generate more stable and reliable differential features. We explored and compared these two data analysis procedures to gain insights into the underlying mechanisms responsible for the disparate results. The effect of univariate data filtration preceding and succeeding PLS-DA analysis on the identified discriminative features/metabolites was investigated using LC-MS data acquired on the samples of human serum and C. elegans extracts, with and without metabolite standards spiked to simulate the treated and control groups of biological samples. It was shown that the univariate data prefiltration before PLS-DA usually gave less but more stable and likely more reliable and meaningful differential features, while PLS-DA applied directly to the original data could be affected by the presence of insignificant features and orthogonal noise. Large number of insignificant variables and orthogonal noise could distort the generated PLS-DA model and affect the p(corr) value, and artificially inflate the calculated VIP values of relevant features due to the increased total number of input features for model construction, thus leading to more false positives selected by the conventional VIP threshold of 1.0. Univariate data filtration preceding PLS-DA was important for the identification of reliable differential features if using a conventional threshold of VIP of 1.0. Presence of insignificant features could distort the PLS-DA model and inflate VIP values. Appropriate VIP threshold is associated with the numbers of input features and the model components. For PLS-DA without univariate prefiltration, threshold of VIP larger than 1.0 is recommended for the selection of discriminative features to reduce the false positives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木叶DAYTOY发布了新的文献求助10
3秒前
科研执修完成签到,获得积分10
3秒前
4秒前
MiaQ发布了新的文献求助10
4秒前
zyt发布了新的文献求助20
5秒前
李兴完成签到,获得积分10
5秒前
kk雯完成签到,获得积分10
6秒前
ss完成签到,获得积分10
6秒前
dove完成签到 ,获得积分10
6秒前
7秒前
wlscj应助坦率雪枫采纳,获得20
7秒前
正直的如凡完成签到,获得积分10
8秒前
9秒前
11秒前
无量发布了新的文献求助30
11秒前
梅子酒发布了新的文献求助10
11秒前
蔡博颖完成签到,获得积分10
12秒前
陀飞轮发布了新的文献求助10
12秒前
David完成签到,获得积分10
12秒前
12秒前
13秒前
霸气的老虎完成签到,获得积分10
14秒前
香蕉觅云应助忧虑的鼠标采纳,获得10
15秒前
15秒前
今后应助wzx采纳,获得10
16秒前
爆米花应助蔡博颖采纳,获得10
16秒前
jiaman1031发布了新的文献求助10
16秒前
云朵完成签到,获得积分10
17秒前
18秒前
CodeCraft应助酷猫采纳,获得10
18秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
19秒前
六沉完成签到 ,获得积分10
20秒前
20秒前
20秒前
温婉的不弱完成签到,获得积分20
21秒前
JamesPei应助kakafan采纳,获得10
21秒前
今后应助内向连碧采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424481
求助须知:如何正确求助?哪些是违规求助? 4538810
关于积分的说明 14163993
捐赠科研通 4455806
什么是DOI,文献DOI怎么找? 2443899
邀请新用户注册赠送积分活动 1435026
关于科研通互助平台的介绍 1412337