Comparing univariate filtration preceding and succeeding PLS-DA analysis on the differential variables/metabolites identified from untargeted LC-MS metabolomics data

单变量 化学 假阳性悖论 单变量分析 代谢组学 色谱法 多元统计 多元分析 统计 数学
作者
Suyun Xu,Caihong Bai,Yanli Chen,Lingling Yu,Wenjun Wu,Kaifeng Hu
出处
期刊:Analytica Chimica Acta [Elsevier]
卷期号:1287: 342103-342103 被引量:15
标识
DOI:10.1016/j.aca.2023.342103
摘要

PLS-DA of high-dimensional metabolomics data is frequently employed to capture the most pertinent features to sample classification. But the presence of numerous insignificant input features could distort the PLS-DA model, blow up and scramble the selected differential features. Usually, univariate filtration is subsequently complemented to refine the selected features, but often giving unstable results. Whereas by precluding insignificant features through univariate data prefiltration assessed by FDR adjusted p-value, PLS-DA can generate more stable and reliable differential features. We explored and compared these two data analysis procedures to gain insights into the underlying mechanisms responsible for the disparate results. The effect of univariate data filtration preceding and succeeding PLS-DA analysis on the identified discriminative features/metabolites was investigated using LC-MS data acquired on the samples of human serum and C. elegans extracts, with and without metabolite standards spiked to simulate the treated and control groups of biological samples. It was shown that the univariate data prefiltration before PLS-DA usually gave less but more stable and likely more reliable and meaningful differential features, while PLS-DA applied directly to the original data could be affected by the presence of insignificant features and orthogonal noise. Large number of insignificant variables and orthogonal noise could distort the generated PLS-DA model and affect the p(corr) value, and artificially inflate the calculated VIP values of relevant features due to the increased total number of input features for model construction, thus leading to more false positives selected by the conventional VIP threshold of 1.0. Univariate data filtration preceding PLS-DA was important for the identification of reliable differential features if using a conventional threshold of VIP of 1.0. Presence of insignificant features could distort the PLS-DA model and inflate VIP values. Appropriate VIP threshold is associated with the numbers of input features and the model components. For PLS-DA without univariate prefiltration, threshold of VIP larger than 1.0 is recommended for the selection of discriminative features to reduce the false positives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善良夜梅发布了新的文献求助10
刚刚
1秒前
1秒前
2秒前
一木发布了新的文献求助10
2秒前
FashionBoy应助goahead0523采纳,获得30
2秒前
030发布了新的文献求助10
3秒前
JamesPei应助干净的问寒采纳,获得10
3秒前
lan完成签到 ,获得积分10
3秒前
圣诞脑仁儿完成签到,获得积分10
3秒前
Finian发布了新的文献求助30
3秒前
不潮薯饼应助繁荣的又亦采纳,获得200
4秒前
4秒前
5秒前
LJJ发布了新的文献求助10
5秒前
慎ming发布了新的文献求助10
6秒前
zy完成签到,获得积分10
6秒前
7秒前
领导范儿应助木湾采纳,获得10
7秒前
我爱科研发布了新的文献求助10
8秒前
9秒前
小豆发布了新的文献求助30
9秒前
Orange应助小白采纳,获得10
9秒前
yeonjun完成签到,获得积分10
9秒前
劲秉应助野鸽儿采纳,获得80
10秒前
哈皮应助csl采纳,获得10
10秒前
奋斗的无施完成签到,获得积分10
11秒前
11秒前
可爱的函函应助粒粒采纳,获得10
11秒前
030完成签到,获得积分10
11秒前
传奇3应助普通市民7v7采纳,获得10
11秒前
12秒前
lxl发布了新的文献求助80
12秒前
慎ming完成签到,获得积分10
13秒前
星辰大海应助凤凰山采纳,获得10
14秒前
一目完成签到,获得积分10
14秒前
易琚发布了新的文献求助10
14秒前
大树爱树懒完成签到,获得积分10
15秒前
科研通AI2S应助小景007采纳,获得10
15秒前
科研通AI2S应助小景007采纳,获得10
15秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3259400
求助须知:如何正确求助?哪些是违规求助? 2901041
关于积分的说明 8313648
捐赠科研通 2570419
什么是DOI,文献DOI怎么找? 1396491
科研通“疑难数据库(出版商)”最低求助积分说明 653523
邀请新用户注册赠送积分活动 631527