Comparing univariate filtration preceding and succeeding PLS-DA analysis on the differential variables/metabolites identified from untargeted LC-MS metabolomics data

单变量 化学 假阳性悖论 单变量分析 代谢组学 色谱法 多元统计 多元分析 统计 数学
作者
Suyun Xu,Caihong Bai,Yanli Chen,Lingling Yu,Wenjun Wu,Kaifeng Hu
出处
期刊:Analytica Chimica Acta [Elsevier]
卷期号:1287: 342103-342103 被引量:40
标识
DOI:10.1016/j.aca.2023.342103
摘要

PLS-DA of high-dimensional metabolomics data is frequently employed to capture the most pertinent features to sample classification. But the presence of numerous insignificant input features could distort the PLS-DA model, blow up and scramble the selected differential features. Usually, univariate filtration is subsequently complemented to refine the selected features, but often giving unstable results. Whereas by precluding insignificant features through univariate data prefiltration assessed by FDR adjusted p-value, PLS-DA can generate more stable and reliable differential features. We explored and compared these two data analysis procedures to gain insights into the underlying mechanisms responsible for the disparate results. The effect of univariate data filtration preceding and succeeding PLS-DA analysis on the identified discriminative features/metabolites was investigated using LC-MS data acquired on the samples of human serum and C. elegans extracts, with and without metabolite standards spiked to simulate the treated and control groups of biological samples. It was shown that the univariate data prefiltration before PLS-DA usually gave less but more stable and likely more reliable and meaningful differential features, while PLS-DA applied directly to the original data could be affected by the presence of insignificant features and orthogonal noise. Large number of insignificant variables and orthogonal noise could distort the generated PLS-DA model and affect the p(corr) value, and artificially inflate the calculated VIP values of relevant features due to the increased total number of input features for model construction, thus leading to more false positives selected by the conventional VIP threshold of 1.0. Univariate data filtration preceding PLS-DA was important for the identification of reliable differential features if using a conventional threshold of VIP of 1.0. Presence of insignificant features could distort the PLS-DA model and inflate VIP values. Appropriate VIP threshold is associated with the numbers of input features and the model components. For PLS-DA without univariate prefiltration, threshold of VIP larger than 1.0 is recommended for the selection of discriminative features to reduce the false positives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Joy完成签到,获得积分10
1秒前
ZZ完成签到 ,获得积分20
1秒前
舒心亦凝发布了新的文献求助10
2秒前
2秒前
慕青应助GUKGO采纳,获得10
2秒前
踟蹰完成签到,获得积分10
2秒前
HK发布了新的文献求助10
2秒前
4秒前
Heaven完成签到,获得积分10
4秒前
小蘑菇应助enen采纳,获得10
4秒前
霸气千易发布了新的文献求助10
4秒前
Elio完成签到,获得积分10
4秒前
4秒前
MJing完成签到,获得积分10
4秒前
秀莉完成签到,获得积分10
5秒前
健康的肺发布了新的文献求助10
5秒前
6秒前
6秒前
Heaven发布了新的文献求助30
7秒前
顶级洋仔发布了新的文献求助10
7秒前
哈哈哈完成签到,获得积分10
7秒前
wwf完成签到,获得积分10
8秒前
充电宝应助走地坤采纳,获得10
8秒前
英俊的铭应助虚幻白玉采纳,获得10
8秒前
9秒前
9秒前
赘婿应助浮浮世世采纳,获得10
9秒前
积极烧鹅发布了新的文献求助20
9秒前
10秒前
打打应助tong采纳,获得10
10秒前
11秒前
整齐硬币完成签到,获得积分10
11秒前
共享精神应助honerchin采纳,获得10
11秒前
Mireia完成签到,获得积分10
11秒前
李爱国应助踏实幻巧采纳,获得10
11秒前
11秒前
moon发布了新的文献求助10
12秒前
兔子发布了新的文献求助10
13秒前
nn发布了新的文献求助10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352065
求助须知:如何正确求助?哪些是违规求助? 4485004
关于积分的说明 13961490
捐赠科研通 4384753
什么是DOI,文献DOI怎么找? 2409168
邀请新用户注册赠送积分活动 1401603
关于科研通互助平台的介绍 1375188