亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparing univariate filtration preceding and succeeding PLS-DA analysis on the differential variables/metabolites identified from untargeted LC-MS metabolomics data

单变量 化学 假阳性悖论 单变量分析 代谢组学 色谱法 多元统计 多元分析 统计 数学
作者
Suyun Xu,Caihong Bai,Yanli Chen,Lingling Yu,Wenjun Wu,Kaifeng Hu
出处
期刊:Analytica Chimica Acta [Elsevier]
卷期号:1287: 342103-342103 被引量:40
标识
DOI:10.1016/j.aca.2023.342103
摘要

PLS-DA of high-dimensional metabolomics data is frequently employed to capture the most pertinent features to sample classification. But the presence of numerous insignificant input features could distort the PLS-DA model, blow up and scramble the selected differential features. Usually, univariate filtration is subsequently complemented to refine the selected features, but often giving unstable results. Whereas by precluding insignificant features through univariate data prefiltration assessed by FDR adjusted p-value, PLS-DA can generate more stable and reliable differential features. We explored and compared these two data analysis procedures to gain insights into the underlying mechanisms responsible for the disparate results. The effect of univariate data filtration preceding and succeeding PLS-DA analysis on the identified discriminative features/metabolites was investigated using LC-MS data acquired on the samples of human serum and C. elegans extracts, with and without metabolite standards spiked to simulate the treated and control groups of biological samples. It was shown that the univariate data prefiltration before PLS-DA usually gave less but more stable and likely more reliable and meaningful differential features, while PLS-DA applied directly to the original data could be affected by the presence of insignificant features and orthogonal noise. Large number of insignificant variables and orthogonal noise could distort the generated PLS-DA model and affect the p(corr) value, and artificially inflate the calculated VIP values of relevant features due to the increased total number of input features for model construction, thus leading to more false positives selected by the conventional VIP threshold of 1.0. Univariate data filtration preceding PLS-DA was important for the identification of reliable differential features if using a conventional threshold of VIP of 1.0. Presence of insignificant features could distort the PLS-DA model and inflate VIP values. Appropriate VIP threshold is associated with the numbers of input features and the model components. For PLS-DA without univariate prefiltration, threshold of VIP larger than 1.0 is recommended for the selection of discriminative features to reduce the false positives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助外向又菱采纳,获得10
4秒前
zeice完成签到 ,获得积分10
15秒前
25秒前
MonkeyKing发布了新的文献求助10
28秒前
外向又菱发布了新的文献求助10
31秒前
32秒前
叙温雨发布了新的文献求助10
35秒前
小二郎应助MonkeyKing采纳,获得10
39秒前
Hello应助外向又菱采纳,获得10
44秒前
52秒前
外向又菱完成签到,获得积分10
55秒前
MOMOMOMO发布了新的文献求助10
57秒前
CodeCraft应助cc采纳,获得10
59秒前
崖涯完成签到 ,获得积分10
1分钟前
MOMOMOMO完成签到,获得积分10
1分钟前
1分钟前
Thanks完成签到 ,获得积分10
1分钟前
顾矜应助叙温雨采纳,获得10
1分钟前
lml发布了新的文献求助10
1分钟前
感谢完成签到,获得积分10
1分钟前
共享精神应助感谢采纳,获得10
1分钟前
1分钟前
陈杰完成签到,获得积分10
1分钟前
感谢发布了新的文献求助10
1分钟前
Hedy完成签到 ,获得积分10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
传奇3应助科研通管家采纳,获得10
2分钟前
2分钟前
叙温雨发布了新的文献求助10
2分钟前
搜集达人应助叙温雨采纳,获得10
2分钟前
执着的香薇完成签到 ,获得积分10
2分钟前
3分钟前
cc发布了新的文献求助10
3分钟前
dynamoo应助guan采纳,获得30
3分钟前
3分钟前
叙温雨发布了新的文献求助10
3分钟前
陈词丶发布了新的文献求助10
3分钟前
CCccCCC完成签到,获得积分20
3分钟前
3分钟前
CCccCCC发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5291706
求助须知:如何正确求助?哪些是违规求助? 4442649
关于积分的说明 13830222
捐赠科研通 4325779
什么是DOI,文献DOI怎么找? 2374461
邀请新用户注册赠送积分活动 1369766
关于科研通互助平台的介绍 1334072