材料科学
复合材料
碳化
极限抗拉强度
扫描电子显微镜
作者
Junfeng Shi,Nan Li,Han Zhang,Jiefeng Gao,Y.L. Wang,Ding‐Xiang Yan
摘要
Abstract Given the increasing requirements for ablative thermal protection materials, there is an urgent need for boron phenolic resin (BPR) composites with excellent high‐temperature strength properties as well as ablation performance to address the structural failure during the ablation process of these devices. Herein, modified pickling asbestos (MPA) was successfully incorporated into BPR to prepare MPA‐modified BPR (MPABPR). In addition, one‐dimensional MPA with improved dispersion and compatibility was used to fabricate a fiber‐reinforced network inside of BPR for the first time, which effectively increased the high‐temperature strength and ablation resistance of BPR. The results demonstrated that the high‐temperature strength of MPABPR was optimally improved by 25% compared to pure BPR. Meanwhile, when the content of MPA was only 5 wt%, the linear and mass ablation rates of MPABPR could reduce to 0.046 mm/s and 0.043 g/s, which were 34.3% and 23.2% lower than that of pure BPR, respectively. This study has the enormous potential to provide a new strategy for preparing high‐performance BPR matrix materials. Highlights The dispersion and compatibility of PA are improved by modification. MPA constructs a fiber‐reinforced network that can strengthen the carbon layer. The ablative properties of MPABPR have great advantages over the BPR. The compressive strength of carbonized MPABPR 5 is 25% higher than that of BPR.
科研通智能强力驱动
Strongly Powered by AbleSci AI