Selenium treatment towards enhanced cyclic stability for single-crystal Ni-rich cathode at ultra-high voltage of 4.7 V

材料科学 阴极 电导率 纳米结构 化学工程 兴奋剂 纳米技术 高压 电压 光电子学 化学 电气工程 物理化学 工程类
作者
Zhi Zhang,Xiang Ding,Xiaobing Huang,Xinyou He,Yang Gong,Biaobiao Xiao,Jixue Shen,Xing Ou
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:482: 148905-148905 被引量:14
标识
DOI:10.1016/j.cej.2024.148905
摘要

Developing high-voltage (≥4.3 V vs Li/Li+) single-crystal Ni-rich LiNixCoyMn1-x-yO2 offers an enticing strategy to achieve high energy density for lithium-ion batteries. However, at high-voltage operation, the cathode will be vulnerable to induce the intrinsic Oα- (α < 2) migration, triggering the serious structural degradation, notorious parasitic reaction and oxygen loss, which may ultimately result in the battery performance attenuation. Herein, an outside-in oriented nanostructure is well designed and constructed on the single-crystal LiNi0.6Co0.1Mn0.3O2 (SC-NCM) cathode materials, exhibiting an "anti-aging" effect of inhibiting the escape of oxygen from SC-NCM particles during the ultra-high voltage (4.7 V) cycling. Both theoretical calculation and experimental results confirm that the outside-in nanostructure would stabilize the oxygen lattice and suppress O2 release during long-term cycling. Meanwhile, the surface modification of thin Se layer will alleviate the parasitic reactions and improve the electronic conductivity. Under the synergistic strategy of surface modification and interface doping, the obtained SC-NCM exhibits boosted cyclic stability in coin half-cell and pouch full-cell simultaneously. Therefore, the reversible capacity of LiNi0.6Co0.1Mn0.3O2 at high voltage is competitive with comercial LiNixCoyMn1-x-yO2 (x ≥ 0.8), demonstrating more superior safety ability and cyclic property. It provides an effective approach for improving the long-term performance of Ni-rich cathode materials for practical application under ultra-high working voltage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gody完成签到,获得积分10
刚刚
溜溜蛋完成签到,获得积分10
1秒前
吃瓜米吃瓜米完成签到 ,获得积分10
1秒前
Crystal完成签到 ,获得积分10
2秒前
3秒前
JamesPei应助蚂蚁Y嘿采纳,获得10
3秒前
失眠的向日葵完成签到 ,获得积分10
5秒前
坦率的之卉完成签到,获得积分20
7秒前
科研通AI6.1应助欣宝采纳,获得10
7秒前
8秒前
8秒前
livra1058完成签到,获得积分10
8秒前
砚木完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
73Jennie123完成签到,获得积分10
10秒前
动力小滋完成签到,获得积分10
10秒前
无名应助离子键采纳,获得20
12秒前
12秒前
12秒前
悲伤的小卷毛完成签到,获得积分10
13秒前
15秒前
rj完成签到,获得积分10
15秒前
15秒前
老实的乐儿完成签到 ,获得积分10
15秒前
16秒前
Owen应助Mayeleven采纳,获得30
20秒前
20秒前
蚂蚁Y嘿发布了新的文献求助10
21秒前
冰蓝色的忧伤完成签到,获得积分10
21秒前
allenice完成签到,获得积分0
22秒前
22秒前
宇宙星河完成签到,获得积分10
25秒前
25秒前
gelinhao完成签到,获得积分0
25秒前
Ava应助长理物电强采纳,获得10
26秒前
量子星尘发布了新的文献求助10
26秒前
Tizzy发布了新的文献求助10
26秒前
飘逸的穆完成签到 ,获得积分10
28秒前
30秒前
雨辰完成签到 ,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5733271
求助须知:如何正确求助?哪些是违规求助? 5347662
关于积分的说明 15323495
捐赠科研通 4878407
什么是DOI,文献DOI怎么找? 2621220
邀请新用户注册赠送积分活动 1570329
关于科研通互助平台的介绍 1527224