Selenium treatment towards enhanced cyclic stability for single-crystal Ni-rich cathode at ultra-high voltage of 4.7 V

材料科学 阴极 电导率 纳米结构 化学工程 兴奋剂 纳米技术 高压 电压 光电子学 化学 电气工程 物理化学 工程类
作者
Zhi Zhang,Xiang Ding,Xiaobing Huang,Xinyou He,Yang Gong,Biaobiao Xiao,Jixue Shen,Xing Ou
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:482: 148905-148905 被引量:14
标识
DOI:10.1016/j.cej.2024.148905
摘要

Developing high-voltage (≥4.3 V vs Li/Li+) single-crystal Ni-rich LiNixCoyMn1-x-yO2 offers an enticing strategy to achieve high energy density for lithium-ion batteries. However, at high-voltage operation, the cathode will be vulnerable to induce the intrinsic Oα- (α < 2) migration, triggering the serious structural degradation, notorious parasitic reaction and oxygen loss, which may ultimately result in the battery performance attenuation. Herein, an outside-in oriented nanostructure is well designed and constructed on the single-crystal LiNi0.6Co0.1Mn0.3O2 (SC-NCM) cathode materials, exhibiting an "anti-aging" effect of inhibiting the escape of oxygen from SC-NCM particles during the ultra-high voltage (4.7 V) cycling. Both theoretical calculation and experimental results confirm that the outside-in nanostructure would stabilize the oxygen lattice and suppress O2 release during long-term cycling. Meanwhile, the surface modification of thin Se layer will alleviate the parasitic reactions and improve the electronic conductivity. Under the synergistic strategy of surface modification and interface doping, the obtained SC-NCM exhibits boosted cyclic stability in coin half-cell and pouch full-cell simultaneously. Therefore, the reversible capacity of LiNi0.6Co0.1Mn0.3O2 at high voltage is competitive with comercial LiNixCoyMn1-x-yO2 (x ≥ 0.8), demonstrating more superior safety ability and cyclic property. It provides an effective approach for improving the long-term performance of Ni-rich cathode materials for practical application under ultra-high working voltage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阳光彩虹小白马关注了科研通微信公众号
刚刚
星辰大海应助QIQI采纳,获得10
刚刚
875259完成签到,获得积分10
1秒前
1秒前
ding应助恩恩天天开心采纳,获得10
1秒前
打打应助现代的糖豆采纳,获得10
1秒前
科目三应助第七个星球采纳,获得10
1秒前
Sue完成签到 ,获得积分10
1秒前
英姑应助HEANZ采纳,获得10
1秒前
梧桐完成签到,获得积分10
1秒前
盒子完成签到,获得积分10
1秒前
Yuki发布了新的文献求助10
2秒前
tangzanwayne发布了新的文献求助10
2秒前
睡觉大王完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
精明的飞槐完成签到,获得积分10
3秒前
YUE完成签到,获得积分10
3秒前
xyy发布了新的文献求助10
3秒前
4秒前
4秒前
小二郎应助qiaoyun采纳,获得10
4秒前
shouyi886发布了新的文献求助10
5秒前
5秒前
安生发布了新的文献求助10
5秒前
875259发布了新的文献求助10
5秒前
香蕉觅云应助Sue采纳,获得10
5秒前
小马甲应助LG采纳,获得30
6秒前
6秒前
科研通AI2S应助Tooth7采纳,获得10
6秒前
朱小燕发布了新的文献求助10
6秒前
南吕十八发布了新的文献求助30
6秒前
liuchair发布了新的文献求助30
7秒前
gggggggdde完成签到,获得积分10
7秒前
yy发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
可爱的函函应助shipcap采纳,获得10
8秒前
bai发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894