亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fast and accurate estimation of selection coefficients and allele histories from ancient and modern DNA

选择(遗传算法) 推论 集合(抽象数据类型) 计算机科学 古代DNA 采样(信号处理) 序列(生物学) 无效假设 自然选择 统计 算法 数学 人工智能 生物 遗传学 人口 人口学 程序设计语言 社会学 滤波器(信号处理) 计算机视觉
作者
Andrew H. Vaughn,Rasmus Nielsen
标识
DOI:10.1101/2023.12.16.572012
摘要

Abstract We here present CLUES2, a full-likelihood method to infer natural selection from sequence data that is an extension of the method CLUES. We make several substantial improvements to the CLUES method that greatly increases both its applicability and its speed. We add the ability to use ARGs on ancient data as emissions to the underlying HMM, which enables CLUES2 to use both temporal and linkage information to make estimates of selection coefficients. We also fully implement the ability to estimate distinct selection coefficients in different epochs, which allows for the analysis of changes in selective pressures through time. In addition, we greatly increase the computational efficiency of CLUES2 over CLUES using several approximations to the forward-backward algorithms and develop a new way to reconstruct historic allele frequencies by integrating over the uncertainty in the estimation of the selection coefficients. We illustrate the accuracy of CLUES2 through extensive simulations and validate the importance sampling framework for integrating over the uncertainty in the inference of gene trees. We also show that CLUES2 is well-calibrated by showing that under the null hypothesis, the distribution of log-likelihood ratios follows a chi-squared distribution with the appropriate degrees of freedom. We run CLUES2 on a set of recently published ancient human data from Western Eurasia and test for evidence of changing selection coefficients through time. We find significant evidence of changing selective pressures in several genes correlated with the introduction of agriculture to Europe and the ensuing dietary and demographic shifts of that time. In particular, our analysis supports previous hypotheses of strong selection on lactase persistence during periods of ancient famines and attenuated selection in more modern periods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助taysun采纳,获得10
刚刚
刚刚
Shihan完成签到,获得积分10
2秒前
牛肉面完成签到,获得积分10
5秒前
小马甲应助大力的图图采纳,获得10
5秒前
生椰拿铁发布了新的文献求助10
6秒前
在水一方应助Shihan采纳,获得10
7秒前
whick发布了新的文献求助10
8秒前
14秒前
忽远忽近的她完成签到 ,获得积分10
16秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
喵了个咪发布了新的文献求助10
19秒前
晴朗完成签到 ,获得积分10
19秒前
米龙完成签到,获得积分10
22秒前
ssch197完成签到 ,获得积分10
22秒前
彭于晏应助凡凡采纳,获得30
25秒前
喵了个咪完成签到 ,获得积分10
29秒前
33秒前
Chris完成签到 ,获得积分10
36秒前
37秒前
凡凡发布了新的文献求助30
38秒前
40秒前
科研通AI2S应助李联洪采纳,获得10
48秒前
科研通AI2S应助Shihan采纳,获得10
49秒前
onelastkiss给onelastkiss的求助进行了留言
50秒前
51秒前
51秒前
56秒前
57秒前
江流儿完成签到,获得积分10
58秒前
1分钟前
雪白冥茗完成签到 ,获得积分10
1分钟前
卷毛维安发布了新的文献求助10
1分钟前
JIE完成签到 ,获得积分10
1分钟前
bbhk完成签到,获得积分10
1分钟前
Orange应助耕云钓月采纳,获得10
1分钟前
1分钟前
小曼完成签到 ,获得积分10
1分钟前
科研通AI6.1应助科研小白采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772284
求助须知:如何正确求助?哪些是违规求助? 5597270
关于积分的说明 15429424
捐赠科研通 4905304
什么是DOI,文献DOI怎么找? 2639326
邀请新用户注册赠送积分活动 1587253
关于科研通互助平台的介绍 1542112