已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Fast and accurate estimation of selection coefficients and allele histories from ancient and modern DNA

选择(遗传算法) 推论 集合(抽象数据类型) 计算机科学 古代DNA 采样(信号处理) 序列(生物学) 无效假设 自然选择 统计 算法 数学 人工智能 生物 遗传学 人口 人口学 滤波器(信号处理) 社会学 计算机视觉 程序设计语言
作者
Andrew H. Vaughn,Rasmus Nielsen
标识
DOI:10.1101/2023.12.16.572012
摘要

Abstract We here present CLUES2, a full-likelihood method to infer natural selection from sequence data that is an extension of the method CLUES. We make several substantial improvements to the CLUES method that greatly increases both its applicability and its speed. We add the ability to use ARGs on ancient data as emissions to the underlying HMM, which enables CLUES2 to use both temporal and linkage information to make estimates of selection coefficients. We also fully implement the ability to estimate distinct selection coefficients in different epochs, which allows for the analysis of changes in selective pressures through time. In addition, we greatly increase the computational efficiency of CLUES2 over CLUES using several approximations to the forward-backward algorithms and develop a new way to reconstruct historic allele frequencies by integrating over the uncertainty in the estimation of the selection coefficients. We illustrate the accuracy of CLUES2 through extensive simulations and validate the importance sampling framework for integrating over the uncertainty in the inference of gene trees. We also show that CLUES2 is well-calibrated by showing that under the null hypothesis, the distribution of log-likelihood ratios follows a chi-squared distribution with the appropriate degrees of freedom. We run CLUES2 on a set of recently published ancient human data from Western Eurasia and test for evidence of changing selection coefficients through time. We find significant evidence of changing selective pressures in several genes correlated with the introduction of agriculture to Europe and the ensuing dietary and demographic shifts of that time. In particular, our analysis supports previous hypotheses of strong selection on lactase persistence during periods of ancient famines and attenuated selection in more modern periods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sy完成签到,获得积分10
1秒前
面包会有的完成签到,获得积分10
2秒前
万安安发布了新的文献求助10
2秒前
英姑应助dk0dk0dk0采纳,获得10
3秒前
愤怒的听双完成签到,获得积分10
3秒前
4秒前
4秒前
CSY应助弄巷采纳,获得10
6秒前
rocky完成签到,获得积分10
7秒前
8秒前
茂飞发布了新的文献求助10
8秒前
星火完成签到,获得积分10
9秒前
10秒前
云鲲发布了新的文献求助10
13秒前
完美世界应助QinQin采纳,获得10
14秒前
jwb711发布了新的文献求助10
15秒前
15秒前
长满头发的秃子完成签到,获得积分10
18秒前
思源应助jwb711采纳,获得10
18秒前
19秒前
20秒前
20秒前
23秒前
24秒前
Dr3发布了新的文献求助10
25秒前
Nofear发布了新的文献求助10
25秒前
Veronica完成签到,获得积分10
26秒前
Uniibooy完成签到 ,获得积分10
26秒前
QinQin发布了新的文献求助10
27秒前
冷静傲丝完成签到 ,获得积分10
30秒前
在水一方应助吴雨涛采纳,获得10
34秒前
35秒前
曾开心完成签到,获得积分10
35秒前
在水一方应助科研通管家采纳,获得10
39秒前
小二郎应助科研通管家采纳,获得10
39秒前
烟花应助科研通管家采纳,获得10
39秒前
爱静静应助科研通管家采纳,获得10
39秒前
39秒前
酷波er应助科研通管家采纳,获得10
39秒前
香蕉觅云应助健忘的友易采纳,获得10
40秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538721
求助须知:如何正确求助?哪些是违规求助? 3116413
关于积分的说明 9325163
捐赠科研通 2814274
什么是DOI,文献DOI怎么找? 1546563
邀请新用户注册赠送积分活动 720607
科研通“疑难数据库(出版商)”最低求助积分说明 712086