Fast and accurate estimation of selection coefficients and allele histories from ancient and modern DNA

选择(遗传算法) 推论 集合(抽象数据类型) 计算机科学 古代DNA 采样(信号处理) 序列(生物学) 无效假设 自然选择 统计 算法 数学 人工智能 生物 遗传学 人口 人口学 滤波器(信号处理) 社会学 计算机视觉 程序设计语言
作者
Andrew H. Vaughn,Rasmus Nielsen
标识
DOI:10.1101/2023.12.16.572012
摘要

Abstract We here present CLUES2, a full-likelihood method to infer natural selection from sequence data that is an extension of the method CLUES. We make several substantial improvements to the CLUES method that greatly increases both its applicability and its speed. We add the ability to use ARGs on ancient data as emissions to the underlying HMM, which enables CLUES2 to use both temporal and linkage information to make estimates of selection coefficients. We also fully implement the ability to estimate distinct selection coefficients in different epochs, which allows for the analysis of changes in selective pressures through time. In addition, we greatly increase the computational efficiency of CLUES2 over CLUES using several approximations to the forward-backward algorithms and develop a new way to reconstruct historic allele frequencies by integrating over the uncertainty in the estimation of the selection coefficients. We illustrate the accuracy of CLUES2 through extensive simulations and validate the importance sampling framework for integrating over the uncertainty in the inference of gene trees. We also show that CLUES2 is well-calibrated by showing that under the null hypothesis, the distribution of log-likelihood ratios follows a chi-squared distribution with the appropriate degrees of freedom. We run CLUES2 on a set of recently published ancient human data from Western Eurasia and test for evidence of changing selection coefficients through time. We find significant evidence of changing selective pressures in several genes correlated with the introduction of agriculture to Europe and the ensuing dietary and demographic shifts of that time. In particular, our analysis supports previous hypotheses of strong selection on lactase persistence during periods of ancient famines and attenuated selection in more modern periods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
现实的艳一完成签到,获得积分10
刚刚
1秒前
multimodal发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
3秒前
嘉悦发布了新的文献求助20
3秒前
阿呆发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
宋杓发布了新的文献求助10
6秒前
思源应助liu采纳,获得10
7秒前
ccc发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
luoqin发布了新的文献求助10
8秒前
zhy发布了新的文献求助10
8秒前
田様应助善良的采蓝采纳,获得10
8秒前
luster发布了新的文献求助20
9秒前
内向流沙应助小火苗采纳,获得10
10秒前
陌姌完成签到,获得积分10
10秒前
搜集达人应助嘉悦采纳,获得20
11秒前
丰富曼青发布了新的文献求助10
12秒前
seal发布了新的文献求助10
12秒前
13秒前
ccc完成签到,获得积分10
13秒前
上官若男应助genieyang采纳,获得10
13秒前
科研通AI2S应助坚强的笑天采纳,获得10
13秒前
guilai完成签到,获得积分10
13秒前
herpes完成签到 ,获得积分0
15秒前
盏盏应助三维采纳,获得10
15秒前
16秒前
梅子完成签到 ,获得积分10
16秒前
17秒前
17秒前
18秒前
米汤发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
The Antibodies, Vol. 2,3,4,5,6 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5461306
求助须知:如何正确求助?哪些是违规求助? 4566276
关于积分的说明 14304569
捐赠科研通 4492010
什么是DOI,文献DOI怎么找? 2460639
邀请新用户注册赠送积分活动 1449964
关于科研通互助平台的介绍 1425599