亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

T‐YOLO: a lightweight and efficient detection model for nutrient buds in complex tea‐plantation environments

失败 营养物 计算机科学 茶园 特征(语言学) 人工智能 生物 园艺 生态学 并行计算 语言学 哲学
作者
Bingyi Bai,Junshu Wang,Jianlong Li,Long Yu,Wen Jiangtao,Yuxing Han
出处
期刊:Journal of the Science of Food and Agriculture [Wiley]
卷期号:104 (10): 5698-5711 被引量:12
标识
DOI:10.1002/jsfa.13396
摘要

Abstract BACKGROUND Quick and accurate detection of nutrient buds is essential for yield prediction and field management in tea plantations. However, the complexity of tea plantation environments and the similarity in color between nutrient buds and older leaves make the location of tea nutrient buds challenging. RESULTS This research presents a lightweight and efficient detection model, T‐YOLO, for the accurate detection of tea nutrient buds in unstructured environments. First, a lightweight module, C2fG2, and an efficient feature extraction module, DBS, are introduced into the backbone and neck of the YOLOv5 baseline model. Second, the head network of the model is pruned to achieve further lightweighting. Finally, the dynamic detection head is integrated to mitigate the feature loss caused by lightweighting. The experimental data show that T‐YOLO achieves a mean average precision (mAP) of 84.1%, the total number of parameters for model training (Params) is 11.26 million (M), and the number of floating‐point operations (FLOPs) is 17.2 Giga (G). Compared with the baseline YOLOv5 model, T‐YOLO reduces Params by 47% and lowers FLOPs by 65%. T‐YOLO also outperforms the existing optimal detection YOLOv8 model by 7.5% in terms of mAP. CONCLUSION The T‐YOLO model proposed in this study performs well in detecting small tea nutrient buds. It provides a decision‐making basis for tea farmers to manage smart tea gardens. The T‐YOLO model outperforms mainstream detection models on the public dataset, Global Wheat Head Detection (GWHD), which offers a reference for the construction of lightweight and efficient detection models for other small target crops. © 2024 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
运运完成签到,获得积分10
5秒前
没用的鱿鱼完成签到 ,获得积分10
16秒前
淮安石河子完成签到 ,获得积分10
20秒前
顺利的水瑶完成签到 ,获得积分10
31秒前
34秒前
46秒前
50秒前
52秒前
56秒前
走冰莫吉托完成签到,获得积分10
1分钟前
1分钟前
Akim应助科研通管家采纳,获得10
1分钟前
852应助孙漪采纳,获得10
1分钟前
1分钟前
爆米花应助00采纳,获得10
1分钟前
孙漪发布了新的文献求助10
1分钟前
龙猫抱枕完成签到,获得积分10
1分钟前
桐桐应助孙漪采纳,获得10
1分钟前
2分钟前
00发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
贺喆发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
MiRoRo完成签到 ,获得积分10
2分钟前
诚心文博发布了新的文献求助30
2分钟前
3分钟前
贺喆完成签到,获得积分10
3分钟前
Owen应助zila采纳,获得10
3分钟前
Marshall发布了新的文献求助20
3分钟前
3分钟前
wangping完成签到,获得积分10
3分钟前
熬夜波比应助科研通管家采纳,获得10
3分钟前
熬夜波比应助科研通管家采纳,获得10
3分钟前
英姑应助科研通管家采纳,获得10
3分钟前
andrele应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
熬夜波比应助科研通管家采纳,获得10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681471
求助须知:如何正确求助?哪些是违规求助? 5007985
关于积分的说明 15175576
捐赠科研通 4840963
什么是DOI,文献DOI怎么找? 2594712
邀请新用户注册赠送积分活动 1547757
关于科研通互助平台的介绍 1505769