T‐YOLO: a lightweight and efficient detection model for nutrient buds in complex tea‐plantation environments

失败 营养物 计算机科学 茶园 特征(语言学) 人工智能 生物 园艺 生态学 并行计算 语言学 哲学
作者
Bingyi Bai,Junshu Wang,Jianlong Li,Long Yu,Wen Jiangtao,Yuxing Han
出处
期刊:Journal of the Science of Food and Agriculture [Wiley]
卷期号:104 (10): 5698-5711 被引量:12
标识
DOI:10.1002/jsfa.13396
摘要

Abstract BACKGROUND Quick and accurate detection of nutrient buds is essential for yield prediction and field management in tea plantations. However, the complexity of tea plantation environments and the similarity in color between nutrient buds and older leaves make the location of tea nutrient buds challenging. RESULTS This research presents a lightweight and efficient detection model, T‐YOLO, for the accurate detection of tea nutrient buds in unstructured environments. First, a lightweight module, C2fG2, and an efficient feature extraction module, DBS, are introduced into the backbone and neck of the YOLOv5 baseline model. Second, the head network of the model is pruned to achieve further lightweighting. Finally, the dynamic detection head is integrated to mitigate the feature loss caused by lightweighting. The experimental data show that T‐YOLO achieves a mean average precision (mAP) of 84.1%, the total number of parameters for model training (Params) is 11.26 million (M), and the number of floating‐point operations (FLOPs) is 17.2 Giga (G). Compared with the baseline YOLOv5 model, T‐YOLO reduces Params by 47% and lowers FLOPs by 65%. T‐YOLO also outperforms the existing optimal detection YOLOv8 model by 7.5% in terms of mAP. CONCLUSION The T‐YOLO model proposed in this study performs well in detecting small tea nutrient buds. It provides a decision‐making basis for tea farmers to manage smart tea gardens. The T‐YOLO model outperforms mainstream detection models on the public dataset, Global Wheat Head Detection (GWHD), which offers a reference for the construction of lightweight and efficient detection models for other small target crops. © 2024 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Echo_枕星完成签到 ,获得积分10
刚刚
直率路人完成签到,获得积分10
刚刚
刚刚
1秒前
王宽宽宽发布了新的文献求助10
1秒前
ko1完成签到 ,获得积分10
1秒前
西西发布了新的文献求助10
1秒前
奶油果泥完成签到,获得积分10
2秒前
Akim应助苦苦采纳,获得10
2秒前
科研通AI6应助瞿琼瑶采纳,获得10
2秒前
毛果完成签到,获得积分10
3秒前
一点发布了新的文献求助20
3秒前
keyanrubbish发布了新的文献求助10
3秒前
天晴完成签到,获得积分10
3秒前
buno应助酷波zai采纳,获得10
3秒前
4秒前
烂漫耳机完成签到,获得积分10
5秒前
木槿完成签到,获得积分10
5秒前
科研通AI6应助王志新采纳,获得10
5秒前
pluto应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
子车茗应助科研通管家采纳,获得30
6秒前
柏林寒冬应助科研通管家采纳,获得10
6秒前
6秒前
活力忆雪应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
Linos应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得30
6秒前
Akim应助单纯的爆米花采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得50
6秒前
香蕉觅云应助科研通管家采纳,获得30
6秒前
Linos应助科研通管家采纳,获得10
6秒前
受伤毛豆应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836