T‐YOLO: a lightweight and efficient detection model for nutrient buds in complex tea‐plantation environments

失败 营养物 计算机科学 茶园 特征(语言学) 人工智能 生物 园艺 生态学 并行计算 语言学 哲学
作者
Bingyi Bai,Junshu Wang,Jianlong Li,Long Yu,Wen Jiangtao,Yuxing Han
出处
期刊:Journal of the Science of Food and Agriculture [Wiley]
卷期号:104 (10): 5698-5711 被引量:12
标识
DOI:10.1002/jsfa.13396
摘要

Abstract BACKGROUND Quick and accurate detection of nutrient buds is essential for yield prediction and field management in tea plantations. However, the complexity of tea plantation environments and the similarity in color between nutrient buds and older leaves make the location of tea nutrient buds challenging. RESULTS This research presents a lightweight and efficient detection model, T‐YOLO, for the accurate detection of tea nutrient buds in unstructured environments. First, a lightweight module, C2fG2, and an efficient feature extraction module, DBS, are introduced into the backbone and neck of the YOLOv5 baseline model. Second, the head network of the model is pruned to achieve further lightweighting. Finally, the dynamic detection head is integrated to mitigate the feature loss caused by lightweighting. The experimental data show that T‐YOLO achieves a mean average precision (mAP) of 84.1%, the total number of parameters for model training (Params) is 11.26 million (M), and the number of floating‐point operations (FLOPs) is 17.2 Giga (G). Compared with the baseline YOLOv5 model, T‐YOLO reduces Params by 47% and lowers FLOPs by 65%. T‐YOLO also outperforms the existing optimal detection YOLOv8 model by 7.5% in terms of mAP. CONCLUSION The T‐YOLO model proposed in this study performs well in detecting small tea nutrient buds. It provides a decision‐making basis for tea farmers to manage smart tea gardens. The T‐YOLO model outperforms mainstream detection models on the public dataset, Global Wheat Head Detection (GWHD), which offers a reference for the construction of lightweight and efficient detection models for other small target crops. © 2024 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Qz发布了新的文献求助10
1秒前
沅芷0871完成签到,获得积分10
1秒前
粉面菜蛋完成签到,获得积分10
1秒前
1秒前
ahsisalah完成签到,获得积分10
1秒前
lyy发布了新的文献求助10
1秒前
bearbiscuit完成签到,获得积分10
2秒前
anastasia完成签到,获得积分10
2秒前
2秒前
Shawn完成签到,获得积分10
2秒前
3秒前
3秒前
KKKK发布了新的文献求助10
3秒前
qwert完成签到,获得积分10
3秒前
普鲁卡因发布了新的文献求助10
3秒前
Iris发布了新的文献求助10
3秒前
黑暗之神发布了新的文献求助10
3秒前
隐形的映波完成签到,获得积分10
3秒前
3秒前
呱呱发布了新的文献求助20
3秒前
3秒前
fwb发布了新的文献求助10
4秒前
散白完成签到,获得积分20
4秒前
Stella应助怡然的乐巧采纳,获得10
4秒前
所所应助tuo zhang采纳,获得10
4秒前
4秒前
平淡的火龙果完成签到,获得积分10
4秒前
dandelion完成签到,获得积分10
5秒前
笑点低的靳完成签到,获得积分10
5秒前
copyaa完成签到,获得积分10
5秒前
呵tui完成签到,获得积分20
5秒前
6秒前
JIAca发布了新的文献求助10
6秒前
yangyangyang完成签到,获得积分10
6秒前
panini发布了新的文献求助10
7秒前
7秒前
7秒前
奋斗时光完成签到,获得积分10
7秒前
Qz完成签到,获得积分10
8秒前
drzz完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017