LESS: Label-efficient multi-scale learning for cytological whole slide image screening

人工智能 计算机科学 模式识别(心理学) 任务(项目管理) 图像(数学) 机器学习 经济 管理
作者
Beidi Zhao,Wenlong Deng,Zi Han Li,Chen Zhou,Zu‐Hua Gao,Gang Wang,Xiaoxiao Li
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:94: 103109-103109 被引量:4
标识
DOI:10.1016/j.media.2024.103109
摘要

In computational pathology, multiple instance learning (MIL) is widely used to circumvent the computational impasse in giga-pixel whole slide image (WSI) analysis. It usually consists of two stages: patch-level feature extraction and slide-level aggregation. Recently, pretrained models or self-supervised learning have been used to extract patch features, but they suffer from low effectiveness or inefficiency due to overlooking the task-specific supervision provided by slide labels. Here we propose a weakly-supervised Label-Efficient WSI Screening method, dubbed LESS, for cytological WSI analysis with only slide-level labels, which can be effectively applied to small datasets. First, we suggest using variational positive-unlabeled (VPU) learning to uncover hidden labels of both benign and malignant patches. We provide appropriate supervision by using slide-level labels to improve the learning of patch-level features. Next, we take into account the sparse and random arrangement of cells in cytological WSIs. To address this, we propose a strategy to crop patches at multiple scales and utilize a cross-attention vision transformer (CrossViT) to combine information from different scales for WSI classification. The combination of our two steps achieves task-alignment, improving effectiveness and efficiency. We validate the proposed label-efficient method on a urine cytology WSI dataset encompassing 130 samples (13,000 patches) and a breast cytology dataset FNAC 2019 with 212 samples (21,200 patches). The experiment shows that the proposed LESS reaches 84.79%, 85.43%, 91.79% and 78.30% on the urine cytology WSI dataset, and 96.88%, 96.86%, 98.95%, 97.06% on the breast cytology high-resolution-image dataset in terms of accuracy, AUC, sensitivity and specificity. It outperforms state-of-the-art MIL methods on pathology WSIs and realizes automatic cytological WSI cancer screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Li发布了新的文献求助10
刚刚
zhang完成签到,获得积分10
刚刚
iNk发布了新的文献求助10
1秒前
甜蜜灵波发布了新的文献求助10
1秒前
会谢完成签到,获得积分10
1秒前
1秒前
akare完成签到,获得积分20
1秒前
1秒前
2秒前
2秒前
研玲完成签到,获得积分10
2秒前
所所应助lishuang5采纳,获得10
2秒前
cheryl完成签到,获得积分10
4秒前
YF完成签到,获得积分10
5秒前
斯文败类应助3s采纳,获得10
5秒前
dawnyue发布了新的文献求助10
5秒前
搜集达人应助念心采纳,获得10
5秒前
222完成签到,获得积分10
6秒前
漫步云端完成签到,获得积分10
6秒前
123发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
大啊蓉完成签到 ,获得积分10
7秒前
Fier在哪完成签到,获得积分10
7秒前
依依完成签到,获得积分10
8秒前
8秒前
依依发布了新的文献求助10
8秒前
malus完成签到,获得积分10
8秒前
9秒前
9秒前
酷波er应助勤奋的丸子采纳,获得10
10秒前
11秒前
11秒前
zy发布了新的文献求助10
12秒前
生sheng发布了新的文献求助10
12秒前
Tiffan完成签到,获得积分10
12秒前
彭于晏应助火星上妙梦采纳,获得10
12秒前
复杂谷蓝完成签到 ,获得积分10
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144133
求助须知:如何正确求助?哪些是违规求助? 2795764
关于积分的说明 7816509
捐赠科研通 2451813
什么是DOI,文献DOI怎么找? 1304705
科研通“疑难数据库(出版商)”最低求助积分说明 627286
版权声明 601419