Research on Improved Fault Detection Method of Rolling Bearing Based on Signal Feature Fusion Technology

方位(导航) 断层(地质) 模糊逻辑 计算机科学 信号(编程语言) 工程类 人工智能 模式识别(心理学) 地质学 地震学 程序设计语言
作者
Zhenggaoyuan Fang,QingE Wu,Wenjing Wang,Shuyan Wu
出处
期刊:Applied sciences [MDPI AG]
卷期号:13 (24): 12987-12987 被引量:3
标识
DOI:10.3390/app132412987
摘要

Rolling bearings are the core transmission components of large-scale equipment. Once a fault occurs, the consequences may be catastrophic, posing a serious threat to life and the safety of the property. Aimed at the problem of rolling bearing faults, this paper analyzes the characteristics of different fault signals and proposes a fault diagnosis method based on fuzzy signals. Based on the definition of an incomplete mapping of a new connotation, this paper proposes a fuzzy fault diagnosis method by fuzzy mapping, gives a fuzzy signal processing algorithm, and discusses two judgment principles. Further, it carries out a vibration signal analysis of the rolling bearing. According to the fault diagnosis method in this paper, the fault rolling bearing is diagnosed. The experimental results show that the proposed method can effectively diagnose rolling bearing faults closer to their natural attributes and solves the problem of traditional generator bearing fault diagnosis that requires complex models and poor diagnosis speed. Further, it can be seen that the average time consumption of this method is reduced and the fault recognition accuracy rate is increased. Compared with the existing related methods, this proposed diagnosis method is superior to that of several existing methods. It not only has higher precision, stronger anti-noise capacity, and faster diagnosis speed, but also has lower effective information loss.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
科研通AI2S应助xrb采纳,获得10
1秒前
3秒前
setmefree发布了新的文献求助10
4秒前
郭达9527完成签到 ,获得积分10
4秒前
changl2023发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
薰硝壤应助阳佟半仙采纳,获得10
6秒前
wang发布了新的文献求助10
7秒前
9秒前
皮卡丘完成签到,获得积分20
9秒前
9秒前
9秒前
阔达曲奇发布了新的文献求助10
9秒前
困敦发布了新的文献求助10
10秒前
tqmx完成签到,获得积分10
10秒前
论文通行者完成签到,获得积分10
10秒前
nihaoooo发布了新的文献求助10
12秒前
充电宝应助年轻的藏今采纳,获得10
13秒前
ai豆的鱼完成签到,获得积分10
13秒前
14秒前
烟花应助Wang采纳,获得10
15秒前
16秒前
18秒前
19秒前
19秒前
hesongheng完成签到,获得积分10
19秒前
Nakjeong完成签到 ,获得积分10
20秒前
21秒前
专注的丹寒完成签到,获得积分10
22秒前
23秒前
Shine完成签到 ,获得积分10
23秒前
wph关闭了wph文献求助
23秒前
23秒前
Chillyi发布了新的文献求助10
24秒前
hesongheng发布了新的文献求助10
25秒前
认真路灯完成签到 ,获得积分10
25秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140965
求助须知:如何正确求助?哪些是违规求助? 2791902
关于积分的说明 7800851
捐赠科研通 2448159
什么是DOI,文献DOI怎么找? 1302441
科研通“疑难数据库(出版商)”最低求助积分说明 626568
版权声明 601226