Research on Improved Fault Detection Method of Rolling Bearing Based on Signal Feature Fusion Technology

方位(导航) 断层(地质) 模糊逻辑 计算机科学 信号(编程语言) 工程类 人工智能 模式识别(心理学) 地震学 程序设计语言 地质学
作者
Zhenggaoyuan Fang,QingE Wu,Wenjing Wang,Shuyan Wu
出处
期刊:Applied sciences [MDPI AG]
卷期号:13 (24): 12987-12987 被引量:3
标识
DOI:10.3390/app132412987
摘要

Rolling bearings are the core transmission components of large-scale equipment. Once a fault occurs, the consequences may be catastrophic, posing a serious threat to life and the safety of the property. Aimed at the problem of rolling bearing faults, this paper analyzes the characteristics of different fault signals and proposes a fault diagnosis method based on fuzzy signals. Based on the definition of an incomplete mapping of a new connotation, this paper proposes a fuzzy fault diagnosis method by fuzzy mapping, gives a fuzzy signal processing algorithm, and discusses two judgment principles. Further, it carries out a vibration signal analysis of the rolling bearing. According to the fault diagnosis method in this paper, the fault rolling bearing is diagnosed. The experimental results show that the proposed method can effectively diagnose rolling bearing faults closer to their natural attributes and solves the problem of traditional generator bearing fault diagnosis that requires complex models and poor diagnosis speed. Further, it can be seen that the average time consumption of this method is reduced and the fault recognition accuracy rate is increased. Compared with the existing related methods, this proposed diagnosis method is superior to that of several existing methods. It not only has higher precision, stronger anti-noise capacity, and faster diagnosis speed, but also has lower effective information loss.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
cvg发布了新的文献求助10
1秒前
耍酷的学姐完成签到,获得积分10
1秒前
科研通AI6应助十药九茯苓采纳,获得10
2秒前
2秒前
3秒前
大气乐儿发布了新的文献求助10
3秒前
科研浩完成签到 ,获得积分10
4秒前
浮游应助Ray采纳,获得10
5秒前
5秒前
pluvia发布了新的文献求助10
6秒前
7秒前
grog完成签到,获得积分10
7秒前
Orange应助Arzu采纳,获得10
7秒前
Ernest完成签到,获得积分10
8秒前
温暖的鸿发布了新的文献求助10
9秒前
9秒前
司徒不二发布了新的文献求助10
11秒前
11秒前
木又完成签到 ,获得积分10
11秒前
12秒前
琪琪完成签到,获得积分10
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
15秒前
cheng发布了新的文献求助10
16秒前
123完成签到,获得积分10
16秒前
yyyy发布了新的文献求助10
16秒前
星辰大海应助grog采纳,获得10
17秒前
无花果应助黎明采纳,获得10
17秒前
清爽的人龙完成签到 ,获得积分10
18秒前
18秒前
moon发布了新的文献求助10
18秒前
19秒前
中微子完成签到,获得积分10
21秒前
tanglu发布了新的文献求助10
22秒前
淡然初瑶完成签到 ,获得积分10
23秒前
Mic应助幽默的乐安采纳,获得10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646612
求助须知:如何正确求助?哪些是违规求助? 4771918
关于积分的说明 15035835
捐赠科研通 4805361
什么是DOI,文献DOI怎么找? 2569639
邀请新用户注册赠送积分活动 1526601
关于科研通互助平台的介绍 1485860