模式识别(心理学)
计算机科学
人工神经网络
人工智能
断层(地质)
过程(计算)
语音识别
操作系统
地质学
地震学
作者
Yao Cui,Xin Huang,Xin Zhang
标识
DOI:10.2478/amns.2023.2.01232
摘要
Abstract This paper explores the process of traditional voiceprint recognition, analyzes the traditional GMM recognition algorithm, and proposes a GE2E-based voiceprint recognition algorithm by combining it with the deep neural network. It firstly uses the Bi-GRU network to replace the LSTM network to prevent the lack of semantic information, then adds the SGD algorithm to optimize the speech features, and finally improves the stability and accuracy of recognition by the GE2E loss function. On this basis, a voiceprint recognition system based on GE2E is designed, and the overall performance of the system is tested. Additionally, a voiceprint recognition system is being explored for fault localization. The results show that the recognition accuracy of male voiceprints in the test is at [0.89,0.95], and the recognition accuracy of female voiceprints is at [0.88,0.96], and there is not much difference in the voiceprint recognition accuracy of the voiceprint recognition system for both male and female students, and the overall recognition accuracy is greater than 0.9. When applied in fault location, the error between the measured distance and the actual fault distance is within 0.1 meters, enabling fault location.
科研通智能强力驱动
Strongly Powered by AbleSci AI