卵母细胞
SMAD公司
生物
转化生长因子
细胞生物学
男科
小RNA
体内
胚胎
基因
遗传学
医学
作者
Jia-Shun Wu,Shuai Gong,Min Zhang,Ruijie Ma,Huili Wang,Ming‐Jiu Luo,Nan He,Jing‐He Tan
标识
DOI:10.1016/j.theriogenology.2024.03.006
摘要
Understanding the mechanisms for oocyte maturation and optimizing the protocols for in vitro maturation (IVM) are greatly important for improving developmental potential of IVM oocytes. The miRNAs expressed in cumulus cells (CCs) play important roles in oocyte maturation and may be used as markers for selection of competent oocytes/embryos. Although a recent study from our group identified several new CCs-expressed miRNAs that regulate cumulus expansion (CE) and CC apoptosis (CCA) in mouse oocytes, validation of these findings and further investigation of mechanisms of action in other model species was essential before wider applications. By using both in vitro and in vivo pig oocyte models with significant differences in CE, CCA and developmental potential, the present study validated that miR-149 and miR-31 improved CE and developmental potential while suppressing CCA of pig oocytes. We demonstrated that miR-149 and miR-31 targeted SMAD family member 6 (SMAD6) and transforming growth factor β2 (TGFB2), respectively, in the transforming growth factor-β (TGF-β) signaling. Furthermore, both miR-149 and miR-31 increased CE and decreased CCA via activating SMAD family member 2 (SMAD2) and increasing the expression of SMAD2 and SMAD family member 4. In conclusion, the present results show that miR-149 and miR-31 improved CE and developmental potential while suppressing CCA of pig oocytes by activating the TGF-β signaling, suggesting that they might be used as markers for pig oocyte quality.
科研通智能强力驱动
Strongly Powered by AbleSci AI