已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Scale problems in data fusion applications to civil engineering

比例(比率) 计算机科学 传感器融合 数据科学 工业工程 系统工程 工程类 人工智能 地理 地图学
作者
Andrea Benedetto
标识
DOI:10.5194/egusphere-egu24-18449
摘要

In the last decade many researchers have investigated the opportunity, at first, to integrate and, more recently, to fuse data observed from different sources in order to enhance the information and to find new correlations for explaining and solving problems.This approach has been successful in the field of civil engineering and in correlated fields.Data integration makes it possible to identify a problem and, simultaneously, make some diagnosis about the main causes of decaying. In general, following a data integration approach, data from different sources (e.g. satellite, photogrammetry, lidar, ground penetrating radar) are evaluated to feed models with the main objective to explain a specific phenomenon as for example the evolution of a damage, the risk assessment of a landslide, the stability of a bridge. Under this framework the data are considered singularly and autonomously but into a unique environment. BIM, among models and digital platforms, can help significantly to manage data.Data fusion approach overpasses the integration because data are not only integrated in one environment but they are merged referring to a single scale digital twin. It is based on the discretization of spatial and time domain in a way that the information from different sources are assigned to the discretized cells.The main problems that have to be tackled are related (1) to the identification of the adequate dimension of the discretization cells, both in terms of spatial and time scale, and (2) to the up or down scaling of the raw data.The dimension of the discretization cell must be designed considering the scale of the problem that has to be studied. For example, the structural risk assessment of a bridge needs spatial scale in the order of 100m in dx and dy, 10-3m in dz and 100days in the time domain. If the problem to be investigated is a landslide the spatial scale can differ so that dx and dy can be in the order of 101m while dz 10-2m and time interval can be related to months.The second relevant problem is the standardization of data versus uniform space and time scale. Typically, it implies the need to upscale some very accurate data and to downscale coarser data. In the case of upscaling the algorithms reduce the information, on the contrary the downscaling produces artificial data by statistically or physically based predictions.Declustering methods have been applied to upscale clouds of data and reduce their number according to the relevant scale. Kriging and block kriging have been applied to downscaling problems in order to generate artificial samples according to the relevant scale.The case of the ancient Roman bridge “Ponte Sisto” has been investigated, by fusing Lidar, In-SAR and GPR data in a digital discrete model. Kriging has been applied to downscale In-SAR data, while ARIMA models have been used to upscale GPR and Lidar data. This research is supported by the Projects “PIASTRE” accepted and funded by the Lazio Region, Italy (PR FESR Lazio 2021-2027 – “Riposizionamento Competitivo RSI”)CUP: F83D23000470009

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
NattyPoe发布了新的文献求助10
1秒前
景__发布了新的文献求助10
1秒前
顺心的傲柔关注了科研通微信公众号
1秒前
鸭鸭要学习鸭完成签到 ,获得积分10
4秒前
活力的小猫咪完成签到 ,获得积分10
5秒前
kaw发布了新的文献求助10
6秒前
7秒前
后陡门爱神完成签到 ,获得积分10
8秒前
kaw完成签到,获得积分10
12秒前
Demi_Ming发布了新的文献求助30
12秒前
豆豆完成签到 ,获得积分10
12秒前
14秒前
于清绝完成签到 ,获得积分10
17秒前
19秒前
木子倪完成签到,获得积分10
19秒前
豆豆发布了新的文献求助10
20秒前
稳重岩完成签到 ,获得积分10
21秒前
幸福猎人1991完成签到,获得积分10
22秒前
starry完成签到 ,获得积分10
22秒前
23秒前
24秒前
25秒前
NattyPoe完成签到,获得积分10
25秒前
SXR完成签到,获得积分10
25秒前
Gengen完成签到 ,获得积分10
26秒前
景__发布了新的文献求助10
26秒前
懒大王完成签到 ,获得积分10
27秒前
科研通AI2S应助欢喜的从露采纳,获得10
27秒前
潇洒的语蝶完成签到 ,获得积分10
27秒前
XiaoQ完成签到 ,获得积分10
27秒前
whisper完成签到,获得积分10
27秒前
veen完成签到 ,获得积分10
29秒前
小文子完成签到 ,获得积分10
31秒前
wait完成签到 ,获得积分10
33秒前
beichuanheqi完成签到,获得积分10
34秒前
Demi_Ming完成签到,获得积分10
35秒前
SciGPT应助doge采纳,获得10
35秒前
35秒前
XiaoQ关注了科研通微信公众号
35秒前
高分求助中
System in Systemic Functional Linguistics A System-based Theory of Language 1000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3117383
求助须知:如何正确求助?哪些是违规求助? 2767503
关于积分的说明 7690900
捐赠科研通 2422835
什么是DOI,文献DOI怎么找? 1286437
科研通“疑难数据库(出版商)”最低求助积分说明 620404
版权声明 599856