BAN-ima: A Box Adaptive Network With Iterative Mixed Attention for Visual Tracking

BitTorrent跟踪器 人工智能 最小边界框 计算机科学 计算机视觉 杠杆(统计) 特征提取 视频跟踪 眼动 特征(语言学) 概率逻辑 光流 目标检测 模式识别(心理学) 对象(语法) 语言学 哲学 图像(数学)
作者
Qun Li,Haijun Zhang,Kai Yang,Gaochang Wu
出处
期刊:IEEE Transactions on Consumer Electronics [Institute of Electrical and Electronics Engineers]
卷期号:70 (1): 2365-2377 被引量:2
标识
DOI:10.1109/tce.2024.3374239
摘要

Recent anchor-free trackers that leverage the remarkably expressive capacity of the fully convolutional network have drawn considerable attention within the field of tracking. However, the independence of feature extraction and feature fusion in existing anchor-free trackers limit the representation ability of the network. To address this issue, we present a new anchor-free tracker, named box adaptive network with iterative mixed attention (BAN-ima), that adopts Vision Transformer (ViT) as its backbone. In particular, we introduce a multi-level feature fusion framework which can effectively incorporate multiple network branches to produce precise predictions of target bounding boxes. To further enhance the tracking precision, we propose a probabilistic branch to replace the traditional classification branch in the tracking head. Furthermore, we introduce an improved Intersection over Union (IoU) loss function, denoted by α-CIoU, which adaptively reweights the loss and gradients of objects with high and low IoUs. This scheme enhances the object localization and regression precision for object tracking. Extensive experiments were carried out on well-established benchmarks for visual tracking, including TrackingNet, GOT-10k, LaSOT, UAV123 and NFS30. The results demonstrate that our developed BAN-ima tracker achieves comparable performance to state-of-the-art trackers while maintaining a real-time speed of 35 frames per second (FPS). In Particular, it achieves 84.7% AUC and 89.1% normalized precision score on the TrackingNet dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助快来拾糖采纳,获得10
1秒前
1秒前
dingyn-2完成签到,获得积分10
1秒前
完美世界应助kti采纳,获得10
2秒前
2秒前
李小狼不浪完成签到,获得积分10
2秒前
枯叶蝶发布了新的文献求助10
4秒前
乐乐应助RAY采纳,获得30
4秒前
4秒前
zyszys发布了新的文献求助10
4秒前
Akim应助驰驰采纳,获得10
5秒前
芒果发布了新的文献求助10
5秒前
6秒前
itszoefff发布了新的文献求助10
7秒前
DIDIDA发布了新的文献求助10
7秒前
8秒前
9秒前
9秒前
9秒前
王青青发布了新的文献求助10
9秒前
Punch完成签到,获得积分10
10秒前
英姑应助标致的世立采纳,获得10
10秒前
10秒前
zyszys完成签到,获得积分10
11秒前
当当羊.发布了新的文献求助10
12秒前
12秒前
12秒前
快来拾糖发布了新的文献求助10
13秒前
14秒前
summer发布了新的文献求助10
14秒前
改改完成签到,获得积分10
14秒前
Lucas应助DIDIDA采纳,获得10
15秒前
16秒前
16秒前
16秒前
16秒前
我要学习写论文完成签到,获得积分10
18秒前
黑暗系发布了新的文献求助30
19秒前
kimoki发布了新的文献求助10
19秒前
邹友亮完成签到,获得积分10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543314
求助须知:如何正确求助?哪些是违规求助? 3120695
关于积分的说明 9343843
捐赠科研通 2818781
什么是DOI,文献DOI怎么找? 1549765
邀请新用户注册赠送积分活动 722233
科研通“疑难数据库(出版商)”最低求助积分说明 713090