Vehicle Trajectory Prediction in Highway Merging Area Using Interactive Graph Attention Mechanism

计算机科学 可解释性 图形 弹道 人工智能 机器学习 数据挖掘 理论计算机科学 天文 物理
作者
Xigang Wu,Duanfeng Chu,Zejian Deng,Guipeng Xin,Hongxiang Liu,Liping Lu
出处
期刊:SAE technical paper series
标识
DOI:10.4271/2023-01-7110
摘要

<div class="section abstract"><div class="htmlview paragraph">Accurately predicting the future trajectories of surrounding traffic agents is important for ensuring the safety of autonomous vehicles. To address the scenario of frequent interactions among traffic agents in the highway merging area, this paper proposes a trajectory prediction method based on interactive graph attention mechanism. Our approach integrates an interactive graph model to capture the complex interactions among traffic agents as well as the interactions between these agents and the contextual map of the highway merging area. By leveraging this interactive graph model, we establish an agent-agent interactive graph and an agent-map interactive graph. Moreover, we employ Graph Attention Network (GAT) to extract spatial interactions among trajectories, enhancing our predictions. To capture temporal dependencies within trajectories, we employ a Transformer-based multi-head self-attention mechanism. Additionally, GAT are utilized to model the interactions between traffic agents and the map. The method we propose comprehensively incorporates the influences of time, space, and the map on trajectories. The interactive graph models can serve as effective prior knowledge for learning-based approaches, thereby enhancing the acquisition of interaction patterns among traffic scenarios and facilitating the interpretability of the method. We evaluate the performances of our method using real-world trajectory datasets from the highway merging area, i.e., the Exits and Entries Drone Dataset (<i>exiD</i>). Comparative analysis against classical algorithms demonstrates a reduced trajectory prediction error for prediction horizons of both 3s and 4s.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小张z完成签到,获得积分10
刚刚
Mess完成签到,获得积分10
刚刚
SYSUer完成签到,获得积分10
2秒前
2秒前
空山新雨发布了新的文献求助10
4秒前
Qimier完成签到 ,获得积分10
6秒前
刘洋关注了科研通微信公众号
6秒前
HH发布了新的文献求助10
6秒前
7秒前
炙热的宛丝完成签到,获得积分10
8秒前
9秒前
香蕉觅云应助Szdx采纳,获得10
10秒前
liuqi完成签到 ,获得积分10
10秒前
完美的友蕊应助hahahaweiwei采纳,获得10
10秒前
今后应助RAIN采纳,获得10
11秒前
XSB完成签到,获得积分10
11秒前
Lucas应助ll采纳,获得10
11秒前
shengzhao发布了新的文献求助10
12秒前
5552222完成签到,获得积分10
12秒前
12秒前
12秒前
小豆豆应助lhnee采纳,获得10
14秒前
15秒前
congcong完成签到 ,获得积分10
15秒前
yy严完成签到,获得积分10
16秒前
dwl完成签到 ,获得积分10
16秒前
111发布了新的文献求助10
16秒前
中心湖小海棠完成签到,获得积分10
17秒前
完美花生发布了新的文献求助10
17秒前
ff发布了新的文献求助30
18秒前
18秒前
忧伤的冰薇完成签到 ,获得积分10
18秒前
Hululu完成签到 ,获得积分10
18秒前
饱满跳跳糖完成签到,获得积分10
19秒前
上官若男应助超级曲奇采纳,获得10
19秒前
星辰完成签到,获得积分10
20秒前
蓝橙完成签到,获得积分10
20秒前
yy严发布了新的文献求助10
22秒前
田様应助温暖的数据线采纳,获得10
23秒前
CQD5201314完成签到,获得积分10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966052
求助须知:如何正确求助?哪些是违规求助? 3511373
关于积分的说明 11158054
捐赠科研通 3245980
什么是DOI,文献DOI怎么找? 1793250
邀请新用户注册赠送积分活动 874284
科研通“疑难数据库(出版商)”最低求助积分说明 804311