Vehicle Trajectory Prediction in Highway Merging Area Using Interactive Graph Attention Mechanism

计算机科学 可解释性 图形 弹道 人工智能 机器学习 数据挖掘 理论计算机科学 物理 天文
作者
Xigang Wu,Duanfeng Chu,Zejian Deng,Guipeng Xin,Hongxiang Liu,Liping Lu
出处
期刊:SAE technical paper series
标识
DOI:10.4271/2023-01-7110
摘要

<div class="section abstract"><div class="htmlview paragraph">Accurately predicting the future trajectories of surrounding traffic agents is important for ensuring the safety of autonomous vehicles. To address the scenario of frequent interactions among traffic agents in the highway merging area, this paper proposes a trajectory prediction method based on interactive graph attention mechanism. Our approach integrates an interactive graph model to capture the complex interactions among traffic agents as well as the interactions between these agents and the contextual map of the highway merging area. By leveraging this interactive graph model, we establish an agent-agent interactive graph and an agent-map interactive graph. Moreover, we employ Graph Attention Network (GAT) to extract spatial interactions among trajectories, enhancing our predictions. To capture temporal dependencies within trajectories, we employ a Transformer-based multi-head self-attention mechanism. Additionally, GAT are utilized to model the interactions between traffic agents and the map. The method we propose comprehensively incorporates the influences of time, space, and the map on trajectories. The interactive graph models can serve as effective prior knowledge for learning-based approaches, thereby enhancing the acquisition of interaction patterns among traffic scenarios and facilitating the interpretability of the method. We evaluate the performances of our method using real-world trajectory datasets from the highway merging area, i.e., the Exits and Entries Drone Dataset (<i>exiD</i>). Comparative analysis against classical algorithms demonstrates a reduced trajectory prediction error for prediction horizons of both 3s and 4s.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zf完成签到 ,获得积分10
1秒前
LHT完成签到,获得积分10
2秒前
Candy发布了新的文献求助10
2秒前
Neo完成签到,获得积分10
2秒前
scc完成签到,获得积分10
3秒前
mmyhn应助茜你亦首歌采纳,获得20
4秒前
mmyhn应助茜你亦首歌采纳,获得20
4秒前
无极微光应助茜你亦首歌采纳,获得20
4秒前
5秒前
5秒前
彭于晏应助小叮当采纳,获得10
6秒前
浮光应助萤火未央采纳,获得30
6秒前
06完成签到,获得积分10
7秒前
7秒前
7秒前
donesonna发布了新的文献求助10
7秒前
8秒前
9秒前
9秒前
zzzzhang_o应助怕孤单的灵竹采纳,获得10
10秒前
10秒前
10秒前
11秒前
嘻嘻印发布了新的文献求助10
11秒前
一寒发布了新的文献求助10
11秒前
足球完成签到,获得积分10
11秒前
毅毅子完成签到,获得积分10
11秒前
morena发布了新的文献求助10
12秒前
12秒前
13秒前
songxiaohong发布了新的文献求助10
13秒前
13秒前
Mort发布了新的文献求助30
13秒前
杂草的生活应助菲菲呀采纳,获得10
13秒前
14秒前
15秒前
donesonna完成签到,获得积分10
15秒前
坚守初心发布了新的文献求助10
16秒前
666666完成签到,获得积分10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588962
求助须知:如何正确求助?哪些是违规求助? 4671741
关于积分的说明 14789385
捐赠科研通 4626869
什么是DOI,文献DOI怎么找? 2532017
邀请新用户注册赠送积分活动 1500619
关于科研通互助平台的介绍 1468373