已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Vehicle Trajectory Prediction in Highway Merging Area Using Interactive Graph Attention Mechanism

计算机科学 可解释性 图形 弹道 人工智能 机器学习 数据挖掘 理论计算机科学 物理 天文
作者
Xigang Wu,Duanfeng Chu,Zejian Deng,Guipeng Xin,Hongxiang Liu,Liping Lu
出处
期刊:SAE technical paper series
标识
DOI:10.4271/2023-01-7110
摘要

<div class="section abstract"><div class="htmlview paragraph">Accurately predicting the future trajectories of surrounding traffic agents is important for ensuring the safety of autonomous vehicles. To address the scenario of frequent interactions among traffic agents in the highway merging area, this paper proposes a trajectory prediction method based on interactive graph attention mechanism. Our approach integrates an interactive graph model to capture the complex interactions among traffic agents as well as the interactions between these agents and the contextual map of the highway merging area. By leveraging this interactive graph model, we establish an agent-agent interactive graph and an agent-map interactive graph. Moreover, we employ Graph Attention Network (GAT) to extract spatial interactions among trajectories, enhancing our predictions. To capture temporal dependencies within trajectories, we employ a Transformer-based multi-head self-attention mechanism. Additionally, GAT are utilized to model the interactions between traffic agents and the map. The method we propose comprehensively incorporates the influences of time, space, and the map on trajectories. The interactive graph models can serve as effective prior knowledge for learning-based approaches, thereby enhancing the acquisition of interaction patterns among traffic scenarios and facilitating the interpretability of the method. We evaluate the performances of our method using real-world trajectory datasets from the highway merging area, i.e., the Exits and Entries Drone Dataset (<i>exiD</i>). Comparative analysis against classical algorithms demonstrates a reduced trajectory prediction error for prediction horizons of both 3s and 4s.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助内向万天采纳,获得10
1秒前
黑豆子发布了新的文献求助10
2秒前
大模型应助猪猪hero采纳,获得10
3秒前
完美世界应助haha采纳,获得10
3秒前
4秒前
清秀寇完成签到,获得积分10
4秒前
fcc完成签到,获得积分10
6秒前
7秒前
8秒前
zgn完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
ran发布了新的文献求助10
11秒前
12秒前
13秒前
lanxinyue发布了新的文献求助10
13秒前
咩咩羊发布了新的文献求助10
13秒前
大个应助王jj采纳,获得10
13秒前
14秒前
14秒前
DandanHan0916发布了新的文献求助10
14秒前
领导范儿应助instill采纳,获得10
14秒前
周苗完成签到 ,获得积分20
14秒前
lqm发布了新的文献求助10
15秒前
猪猪hero发布了新的文献求助10
15秒前
16秒前
bukeshuo发布了新的文献求助10
16秒前
17秒前
17秒前
17秒前
18秒前
19秒前
水濑心源完成签到,获得积分10
20秒前
周苗关注了科研通微信公众号
20秒前
zhang完成签到,获得积分10
20秒前
CipherSage应助咩咩羊采纳,获得30
21秒前
qi发布了新的文献求助10
22秒前
HHY发布了新的文献求助10
22秒前
hhhr发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644082
求助须知:如何正确求助?哪些是违规求助? 4762848
关于积分的说明 15023478
捐赠科研通 4802306
什么是DOI,文献DOI怎么找? 2567408
邀请新用户注册赠送积分活动 1525124
关于科研通互助平台的介绍 1484620