Data-consistent Unsupervised Diffusion Model for Metal Artifact Reduction

工件(错误) 计算机科学 修补 一致性(知识库) 人工智能 跟踪(心理语言学) 还原(数学) 数据一致性 领域(数学分析) 模式识别(心理学) 图像(数学) 数学 语言学 操作系统 数学分析 哲学 几何学
作者
Zhan Tong,Zhan Wu,Yang Yang,Weilong Mao,Shijie Wang,Yinsheng Li,Yang Chen
标识
DOI:10.1109/bibm58861.2023.10385300
摘要

Computed Tomography (CT) is an imaging technique widely used in clinical diagnosis. However, high-attenuation metallic implants result in the obstruction of low-energy Xrays and further lead to metal artifacts in the reconstructed CT images. Deep supervised model-based metal artifact reduction(MAR) approaches are limited in clinical applications due to the difficulty in obtaining paired artifact-affected and artifactfree data. Furthermore, these model-based methods lack the consideration of data consistency in the sinogram-domain to perform exact metal trace inpainting. To address these challenges, we propose a Data-consistent unsupErVised diffusiOn model for meTal artifact rEDuction, called DEVOTED-Net. First, DEVOTED-Net leverages prior knowledge to guide the conditional diffusion model for fine-grained metal trace inpainting. Second, an unsupervised MAR framework is designed in the reverse process for the unknown metal traces restoration in the sinogram domain. Third, to further enhance the sinogram-domain data consistency, physics-based consistency constraint loss including conjugateray consistency loss and accumulation-ray consistency loss is designed. Extensive experiments are carried out to verify the performance of our algorithm on the publicly available dataset and clinical experimental dataset. This efficient, accurate, and reliable MAR approach holds great potential in clinics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
JamesPei应助激昂的背包采纳,获得10
2秒前
2秒前
CipherSage应助zlj采纳,获得10
2秒前
lululuao发布了新的文献求助10
2秒前
4秒前
专一的访文完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
叶小文发布了新的文献求助10
6秒前
7秒前
8秒前
亚迪发布了新的文献求助10
8秒前
9秒前
123发布了新的文献求助10
9秒前
9秒前
思源应助乃惜采纳,获得10
11秒前
小么完成签到 ,获得积分10
11秒前
qqq发布了新的文献求助10
15秒前
15秒前
NexusExplorer应助酒尚温采纳,获得10
16秒前
16秒前
16秒前
17秒前
ss完成签到 ,获得积分10
18秒前
李爱国应助摸俞采纳,获得10
18秒前
19秒前
chnnnnnna完成签到,获得积分10
20秒前
20秒前
着急的猴发布了新的文献求助10
20秒前
21秒前
NexusExplorer应助刘胖胖采纳,获得10
22秒前
22秒前
22秒前
亚迪完成签到,获得积分10
23秒前
lin发布了新的文献求助10
23秒前
敢敢发布了新的文献求助10
23秒前
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421856
求助须知:如何正确求助?哪些是违规求助? 4536767
关于积分的说明 14155159
捐赠科研通 4453354
什么是DOI,文献DOI怎么找? 2442854
邀请新用户注册赠送积分活动 1434227
关于科研通互助平台的介绍 1411370