Data-consistent Unsupervised Diffusion Model for Metal Artifact Reduction

工件(错误) 计算机科学 修补 一致性(知识库) 人工智能 跟踪(心理语言学) 还原(数学) 数据一致性 领域(数学分析) 模式识别(心理学) 图像(数学) 数学 语言学 操作系统 数学分析 哲学 几何学
作者
Zhan Tong,Zhan Wu,Yang Yang,Weilong Mao,Shijie Wang,Yinsheng Li,Yang Chen
标识
DOI:10.1109/bibm58861.2023.10385300
摘要

Computed Tomography (CT) is an imaging technique widely used in clinical diagnosis. However, high-attenuation metallic implants result in the obstruction of low-energy Xrays and further lead to metal artifacts in the reconstructed CT images. Deep supervised model-based metal artifact reduction(MAR) approaches are limited in clinical applications due to the difficulty in obtaining paired artifact-affected and artifactfree data. Furthermore, these model-based methods lack the consideration of data consistency in the sinogram-domain to perform exact metal trace inpainting. To address these challenges, we propose a Data-consistent unsupErVised diffusiOn model for meTal artifact rEDuction, called DEVOTED-Net. First, DEVOTED-Net leverages prior knowledge to guide the conditional diffusion model for fine-grained metal trace inpainting. Second, an unsupervised MAR framework is designed in the reverse process for the unknown metal traces restoration in the sinogram domain. Third, to further enhance the sinogram-domain data consistency, physics-based consistency constraint loss including conjugateray consistency loss and accumulation-ray consistency loss is designed. Extensive experiments are carried out to verify the performance of our algorithm on the publicly available dataset and clinical experimental dataset. This efficient, accurate, and reliable MAR approach holds great potential in clinics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乌乌发布了新的文献求助10
刚刚
迟宏珈发布了新的文献求助10
1秒前
1秒前
领导范儿应助浅夏初晴采纳,获得10
1秒前
1秒前
充电宝应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得30
2秒前
Orange应助科研通管家采纳,获得30
2秒前
2秒前
研究生end应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
田様应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
大个应助科研通管家采纳,获得10
4秒前
4秒前
科目三应助腿哥采纳,获得10
4秒前
超级的鞅发布了新的文献求助10
5秒前
5秒前
张丽妍发布了新的文献求助10
6秒前
Viper3发布了新的文献求助30
6秒前
苦行僧完成签到,获得积分10
6秒前
希望天下0贩的0应助未了采纳,获得10
7秒前
7秒前
完美世界应助王子恒采纳,获得10
8秒前
8秒前
4652376完成签到 ,获得积分0
8秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
The Emotional Life of Organisations 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5215340
求助须知:如何正确求助?哪些是违规求助? 4390475
关于积分的说明 13670085
捐赠科研通 4252359
什么是DOI,文献DOI怎么找? 2333057
邀请新用户注册赠送积分活动 1330667
关于科研通互助平台的介绍 1284488