亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Data-consistent Unsupervised Diffusion Model for Metal Artifact Reduction

工件(错误) 计算机科学 修补 一致性(知识库) 人工智能 跟踪(心理语言学) 还原(数学) 数据一致性 领域(数学分析) 模式识别(心理学) 图像(数学) 数学 数学分析 哲学 语言学 几何学 操作系统
作者
Zhan Tong,Zhan Wu,Yang Yang,Weilong Mao,Shijie Wang,Yinsheng Li,Yang Chen
标识
DOI:10.1109/bibm58861.2023.10385300
摘要

Computed Tomography (CT) is an imaging technique widely used in clinical diagnosis. However, high-attenuation metallic implants result in the obstruction of low-energy Xrays and further lead to metal artifacts in the reconstructed CT images. Deep supervised model-based metal artifact reduction(MAR) approaches are limited in clinical applications due to the difficulty in obtaining paired artifact-affected and artifactfree data. Furthermore, these model-based methods lack the consideration of data consistency in the sinogram-domain to perform exact metal trace inpainting. To address these challenges, we propose a Data-consistent unsupErVised diffusiOn model for meTal artifact rEDuction, called DEVOTED-Net. First, DEVOTED-Net leverages prior knowledge to guide the conditional diffusion model for fine-grained metal trace inpainting. Second, an unsupervised MAR framework is designed in the reverse process for the unknown metal traces restoration in the sinogram domain. Third, to further enhance the sinogram-domain data consistency, physics-based consistency constraint loss including conjugateray consistency loss and accumulation-ray consistency loss is designed. Extensive experiments are carried out to verify the performance of our algorithm on the publicly available dataset and clinical experimental dataset. This efficient, accurate, and reliable MAR approach holds great potential in clinics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
16秒前
小蘑菇应助科研通管家采纳,获得10
32秒前
33秒前
33秒前
36秒前
37秒前
2223发布了新的文献求助10
40秒前
归尘发布了新的文献求助30
42秒前
52秒前
xxxxx炒菜发布了新的文献求助10
56秒前
57秒前
1分钟前
yuxiazhengye发布了新的文献求助10
1分钟前
yuxiazhengye完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Raunio完成签到,获得积分10
1分钟前
JulyP关注了科研通微信公众号
2分钟前
跳跃妙菱完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
JulyP发布了新的文献求助10
2分钟前
HYQ完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Huzhu应助科研通管家采纳,获得30
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
爆米花应助温暖的夏波采纳,获得30
3分钟前
insideplus发布了新的文献求助10
3分钟前
李爱国应助烟消云散采纳,获得10
3分钟前
insideplus完成签到,获得积分10
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488594
求助须知:如何正确求助?哪些是违规求助? 4587405
关于积分的说明 14413853
捐赠科研通 4518798
什么是DOI,文献DOI怎么找? 2476092
邀请新用户注册赠送积分活动 1461552
关于科研通互助平台的介绍 1434505