A fusion model of temporal graph attention network and machine learning for inferring commuting flow from human activity intensity dynamics

计算机科学 嵌入 节点(物理) 图形 人工智能 数据挖掘 机器学习 理论计算机科学 工程类 结构工程
作者
Qingli Shi,Li Zhuo,Haiyan Tao,Junying Yang
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:126: 103610-103610 被引量:3
标识
DOI:10.1016/j.jag.2023.103610
摘要

Accurately estimating commuting flow is essential for optimizing urban planning and traffic design. The latest graph neural network (GNN) model with the encoder-decoder-predictor components has several limitations. First, it ignores the temporal dependency of node features for node embedding. Second, different estimation methods used in the decoder and predictor make it difficult to distinguish the contribution of node embedding or estimation method to flow estimation. Third, finer-grained socio-economic features of nodes are difficult to obtain due to low data availability. To address these problems, this study proposes a fusion model of temporal graph attention network and machine learning (TGAT-ML) to infer commuting flow from dynamic human activity intensity distribution. The model first constructs a commuting network with temporal human activity intensity as node features. A temporal graph attention network is then developed to capture the spatiotemporal dependency. The learned node embedding is generated by using a machine learning method in the decoder. Finally, based on learned node embedding and machine learning method used in the decoder, the commuting flow intensity is estimated. Results from an empirical study using the Baidu heat map data of Guangzhou city indicate that the proposed fusion model TGAT-ML outperforms all other baseline models. This study proves that the model performance can be significantly enhanced by determining the edge existence through commuting time-based approach, integrating temporal convolution with graph convolution, and unifying flow estimation method in both decoder and predictor. This work enables commuting flow estimation from dynamic human activity intensity and broadens existing flow generation research in terms of data and methodology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助初遇之时最暖采纳,获得10
刚刚
十三发布了新的文献求助10
刚刚
英姑应助kristy采纳,获得50
2秒前
liunianru完成签到,获得积分10
5秒前
5秒前
fan完成签到,获得积分10
6秒前
星辰大海应助江江采纳,获得10
7秒前
fafafa完成签到,获得积分10
7秒前
lull发布了新的文献求助10
8秒前
8秒前
Akim应助xlogeman采纳,获得10
8秒前
勤恳大雁完成签到,获得积分10
10秒前
fafafa发布了新的文献求助30
11秒前
11秒前
DTL哈哈发布了新的文献求助10
12秒前
ZZC完成签到,获得积分20
13秒前
传奇3应助baihy采纳,获得10
15秒前
16秒前
17秒前
林林完成签到 ,获得积分10
20秒前
22秒前
汉堡包应助txt0127采纳,获得10
22秒前
刘琪琪发布了新的文献求助10
23秒前
23秒前
23秒前
wshiyu完成签到 ,获得积分10
25秒前
Zzyang55发布了新的文献求助10
26秒前
26秒前
黄新绒完成签到 ,获得积分10
27秒前
江江完成签到,获得积分10
28秒前
28秒前
30秒前
高高梦松完成签到,获得积分10
30秒前
英姑应助刘琪琪采纳,获得10
31秒前
lull发布了新的文献求助10
31秒前
郭子琪发布了新的文献求助10
33秒前
小蘑菇应助称心的沛柔采纳,获得10
33秒前
38秒前
38秒前
40秒前
高分求助中
Comprehensive natural products III : chemistry and biology 3000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3346534
求助须知:如何正确求助?哪些是违规求助? 2973237
关于积分的说明 8658336
捐赠科研通 2653621
什么是DOI,文献DOI怎么找? 1453288
科研通“疑难数据库(出版商)”最低求助积分说明 672801
邀请新用户注册赠送积分活动 662717