已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Estimating subsurface geostatistical parameters from surface-based GPR reflection data using a deep-learning approach

探地雷达 计算机科学 深度学习 人工智能 克里金 合成数据 背景(考古学) 反演(地质) 人工神经网络 反射(计算机编程) 航程(航空) 机器学习 蒙特卡罗方法 偏移量(计算机科学) 地质学 雷达 工程类 数学 构造盆地 航空航天工程 古生物学 统计 电信 程序设计语言
作者
Lie Yu,James Irving,Klaus Holliger
标识
DOI:10.1190/image2023-3910415.1
摘要

PreviousNext No AccessThird International Meeting for Applied Geoscience & Energy Expanded AbstractsEstimating subsurface geostatistical parameters from surface-based GPR reflection data using a deep-learning approachAuthors: Yu LiuJames IrvingKlaus HolligerYu LiuUniversity of LausanneSearch for more papers by this author, James IrvingUniversity of LausanneSearch for more papers by this author, and Klaus HolligerUniversity of LausanneSearch for more papers by this authorhttps://doi.org/10.1190/image2023-3910415.1 SectionsAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InReddit AbstractThe estimation of subsurface geostatistical parameters from surface-based common-offset GPR reflection data has so far relied upon a Monte-Carlo-type inversion approach. This allows for a comprehensive exploration of the parameter space and provides some measure of uncertainty with regard to the inferred results. However, the associated computational costs are inherently high. To alleviate this problem, we present an alternative deep-learning-based technique, which, once trained in a supervised context, allows us to perform the same task in a highly efficient manner. The proposed approach uses a convolutional neural network (CNN), which is trained on a vast database of autocorrelations obtained from synthetic GPR images for a comprehensive range of stochastic subsurface models. An important aspect of the training process is that it the synthetic GPR data are generated using a computationally efficient approximate solution of the underlying physical problem. The allows circumventing the notorious problem associated with the lack of training data, which often hampers the routine application of deep-learning-based techniques in applied geophysics. Tests on a wide range of realistic synthetic GPR data generated using a finite-difference time-domain (FDTD) solution of Maxwell’s equations as well as a comparison with the traditional Monte Carlo approach on a pertinent field dataset confirm the viability of the proposed method, even in the presence of high noise levels.Keywords: GPR, shallow subsurface, heterogeneity, geostatistics, deep learningPermalink: https://doi.org/10.1190/image2023-3910415.1FiguresReferencesRelatedDetails Third International Meeting for Applied Geoscience & Energy Expanded Abstracts ISSN (print):1052-3812 ISSN (online):1949-4645 Copyright: 2023 Pages: 1812 publication data© 2023 Published in electronic format with permission by the Society of Exploration Geophysicists and the American Association of Petroleum GeologistsPublisher:Society of Exploration Geophysicists HistoryPublished Online: 14 Dec 2023 CITATION INFORMATION Yu Liu, James Irving, and Klaus Holliger, (2023), "Estimating subsurface geostatistical parameters from surface-based GPR reflection data using a deep-learning approach," SEG Technical Program Expanded Abstracts : 1174-1178. https://doi.org/10.1190/image2023-3910415.1 Plain-Language Summary KeywordsGPRshallow subsurfaceheterogeneitygeostatisticsdeep learningPDF DownloadLoading ...
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yiping发布了新的文献求助10
3秒前
4秒前
jhgg8009应助FODCOC采纳,获得200
5秒前
5秒前
lehha完成签到,获得积分10
9秒前
9秒前
纯真冰蝶完成签到 ,获得积分10
12秒前
14秒前
18秒前
18秒前
22秒前
23秒前
等等关注了科研通微信公众号
24秒前
26秒前
潇潇完成签到 ,获得积分10
29秒前
31秒前
天真的棒棒糖完成签到,获得积分20
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
tuanheqi应助科研通管家采纳,获得20
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
Smith.w应助科研通管家采纳,获得10
34秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
Smith.w应助科研通管家采纳,获得10
34秒前
34秒前
38秒前
zoe完成签到 ,获得积分10
40秒前
41秒前
TOOTOO_J发布了新的文献求助10
43秒前
45秒前
51秒前
8565发布了新的文献求助10
56秒前
geen发布了新的文献求助10
57秒前
1分钟前
郑洲完成签到 ,获得积分10
1分钟前
1分钟前
洪汉完成签到,获得积分10
1分钟前
YC完成签到 ,获得积分10
1分钟前
1分钟前
小枣完成签到 ,获得积分10
1分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3238721
求助须知:如何正确求助?哪些是违规求助? 2884110
关于积分的说明 8232554
捐赠科研通 2552227
什么是DOI,文献DOI怎么找? 1380540
科研通“疑难数据库(出版商)”最低求助积分说明 649037
邀请新用户注册赠送积分活动 624754