Estimating subsurface geostatistical parameters from surface-based GPR reflection data using a deep-learning approach

探地雷达 计算机科学 深度学习 人工智能 克里金 合成数据 背景(考古学) 反演(地质) 人工神经网络 反射(计算机编程) 航程(航空) 机器学习 蒙特卡罗方法 偏移量(计算机科学) 地质学 雷达 工程类 数学 构造盆地 航空航天工程 古生物学 统计 电信 程序设计语言
作者
Lie Yu,James Irving,Klaus Holliger
标识
DOI:10.1190/image2023-3910415.1
摘要

PreviousNext No AccessThird International Meeting for Applied Geoscience & Energy Expanded AbstractsEstimating subsurface geostatistical parameters from surface-based GPR reflection data using a deep-learning approachAuthors: Yu LiuJames IrvingKlaus HolligerYu LiuUniversity of LausanneSearch for more papers by this author, James IrvingUniversity of LausanneSearch for more papers by this author, and Klaus HolligerUniversity of LausanneSearch for more papers by this authorhttps://doi.org/10.1190/image2023-3910415.1 SectionsAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InReddit AbstractThe estimation of subsurface geostatistical parameters from surface-based common-offset GPR reflection data has so far relied upon a Monte-Carlo-type inversion approach. This allows for a comprehensive exploration of the parameter space and provides some measure of uncertainty with regard to the inferred results. However, the associated computational costs are inherently high. To alleviate this problem, we present an alternative deep-learning-based technique, which, once trained in a supervised context, allows us to perform the same task in a highly efficient manner. The proposed approach uses a convolutional neural network (CNN), which is trained on a vast database of autocorrelations obtained from synthetic GPR images for a comprehensive range of stochastic subsurface models. An important aspect of the training process is that it the synthetic GPR data are generated using a computationally efficient approximate solution of the underlying physical problem. The allows circumventing the notorious problem associated with the lack of training data, which often hampers the routine application of deep-learning-based techniques in applied geophysics. Tests on a wide range of realistic synthetic GPR data generated using a finite-difference time-domain (FDTD) solution of Maxwell’s equations as well as a comparison with the traditional Monte Carlo approach on a pertinent field dataset confirm the viability of the proposed method, even in the presence of high noise levels.Keywords: GPR, shallow subsurface, heterogeneity, geostatistics, deep learningPermalink: https://doi.org/10.1190/image2023-3910415.1FiguresReferencesRelatedDetails Third International Meeting for Applied Geoscience & Energy Expanded Abstracts ISSN (print):1052-3812 ISSN (online):1949-4645 Copyright: 2023 Pages: 1812 publication data© 2023 Published in electronic format with permission by the Society of Exploration Geophysicists and the American Association of Petroleum GeologistsPublisher:Society of Exploration Geophysicists HistoryPublished Online: 14 Dec 2023 CITATION INFORMATION Yu Liu, James Irving, and Klaus Holliger, (2023), "Estimating subsurface geostatistical parameters from surface-based GPR reflection data using a deep-learning approach," SEG Technical Program Expanded Abstracts : 1174-1178. https://doi.org/10.1190/image2023-3910415.1 Plain-Language Summary KeywordsGPRshallow subsurfaceheterogeneitygeostatisticsdeep learningPDF DownloadLoading ...
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
小马甲应助香蕉采纳,获得10
2秒前
DyG完成签到,获得积分10
2秒前
高序发布了新的文献求助10
3秒前
4秒前
4秒前
yan完成签到,获得积分10
4秒前
菡菡菡菡菡完成签到,获得积分10
4秒前
honey完成签到,获得积分10
4秒前
天天快乐应助檀熹采纳,获得10
5秒前
沉积岩完成签到,获得积分10
5秒前
沧浪江发布了新的文献求助10
5秒前
汉堡包应助蓝桉采纳,获得10
5秒前
silstorm完成签到,获得积分10
6秒前
金东华完成签到,获得积分10
6秒前
妮妮爱smile完成签到,获得积分10
6秒前
南有乔木发布了新的文献求助10
6秒前
6秒前
zly完成签到,获得积分10
6秒前
失眠夏山完成签到,获得积分10
7秒前
junfeiwang发布了新的文献求助10
7秒前
7秒前
背后梦安完成签到,获得积分10
7秒前
8秒前
chen完成签到,获得积分10
9秒前
9秒前
9秒前
嗒嗒完成签到,获得积分10
10秒前
失眠的耳机完成签到,获得积分10
10秒前
10秒前
11秒前
关显锋发布了新的文献求助10
11秒前
champion完成签到,获得积分10
12秒前
12秒前
Owen应助包容的水壶采纳,获得10
12秒前
WANG给WANG的求助进行了留言
13秒前
善良天抒发布了新的文献求助10
13秒前
LLC发布了新的文献求助10
13秒前
huangjie发布了新的文献求助10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969033
求助须知:如何正确求助?哪些是违规求助? 3513900
关于积分的说明 11170818
捐赠科研通 3249256
什么是DOI,文献DOI怎么找? 1794708
邀请新用户注册赠送积分活动 875326
科研通“疑难数据库(出版商)”最低求助积分说明 804759