已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Estimating subsurface geostatistical parameters from surface-based GPR reflection data using a deep-learning approach

探地雷达 计算机科学 深度学习 人工智能 克里金 合成数据 背景(考古学) 反演(地质) 人工神经网络 反射(计算机编程) 航程(航空) 机器学习 蒙特卡罗方法 偏移量(计算机科学) 地质学 雷达 工程类 数学 构造盆地 航空航天工程 古生物学 统计 电信 程序设计语言
作者
Lie Yu,James Irving,Klaus Holliger
标识
DOI:10.1190/image2023-3910415.1
摘要

PreviousNext No AccessThird International Meeting for Applied Geoscience & Energy Expanded AbstractsEstimating subsurface geostatistical parameters from surface-based GPR reflection data using a deep-learning approachAuthors: Yu LiuJames IrvingKlaus HolligerYu LiuUniversity of LausanneSearch for more papers by this author, James IrvingUniversity of LausanneSearch for more papers by this author, and Klaus HolligerUniversity of LausanneSearch for more papers by this authorhttps://doi.org/10.1190/image2023-3910415.1 SectionsAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InReddit AbstractThe estimation of subsurface geostatistical parameters from surface-based common-offset GPR reflection data has so far relied upon a Monte-Carlo-type inversion approach. This allows for a comprehensive exploration of the parameter space and provides some measure of uncertainty with regard to the inferred results. However, the associated computational costs are inherently high. To alleviate this problem, we present an alternative deep-learning-based technique, which, once trained in a supervised context, allows us to perform the same task in a highly efficient manner. The proposed approach uses a convolutional neural network (CNN), which is trained on a vast database of autocorrelations obtained from synthetic GPR images for a comprehensive range of stochastic subsurface models. An important aspect of the training process is that it the synthetic GPR data are generated using a computationally efficient approximate solution of the underlying physical problem. The allows circumventing the notorious problem associated with the lack of training data, which often hampers the routine application of deep-learning-based techniques in applied geophysics. Tests on a wide range of realistic synthetic GPR data generated using a finite-difference time-domain (FDTD) solution of Maxwell’s equations as well as a comparison with the traditional Monte Carlo approach on a pertinent field dataset confirm the viability of the proposed method, even in the presence of high noise levels.Keywords: GPR, shallow subsurface, heterogeneity, geostatistics, deep learningPermalink: https://doi.org/10.1190/image2023-3910415.1FiguresReferencesRelatedDetails Third International Meeting for Applied Geoscience & Energy Expanded Abstracts ISSN (print):1052-3812 ISSN (online):1949-4645 Copyright: 2023 Pages: 1812 publication data© 2023 Published in electronic format with permission by the Society of Exploration Geophysicists and the American Association of Petroleum GeologistsPublisher:Society of Exploration Geophysicists HistoryPublished Online: 14 Dec 2023 CITATION INFORMATION Yu Liu, James Irving, and Klaus Holliger, (2023), "Estimating subsurface geostatistical parameters from surface-based GPR reflection data using a deep-learning approach," SEG Technical Program Expanded Abstracts : 1174-1178. https://doi.org/10.1190/image2023-3910415.1 Plain-Language Summary KeywordsGPRshallow subsurfaceheterogeneitygeostatisticsdeep learningPDF DownloadLoading ...
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mmyhn完成签到,获得积分10
1秒前
懂得瞧发布了新的文献求助10
2秒前
2秒前
大个应助研友_Zzy1pn采纳,获得10
4秒前
橘猫217发布了新的文献求助10
7秒前
8秒前
ktw完成签到,获得积分10
9秒前
ofafafa完成签到 ,获得积分10
12秒前
sunshihaoya发布了新的文献求助10
13秒前
jyy完成签到,获得积分10
14秒前
一枚青椒完成签到,获得积分10
16秒前
懒得起名字完成签到 ,获得积分20
17秒前
灰色白面鸮完成签到,获得积分10
25秒前
25秒前
26秒前
懂得瞧完成签到,获得积分20
29秒前
COF发布了新的文献求助10
30秒前
与于完成签到,获得积分10
31秒前
35秒前
吉林完成签到 ,获得积分10
39秒前
COF完成签到,获得积分20
42秒前
开朗满天完成签到,获得积分10
43秒前
斯文败类应助xiaoxiong采纳,获得10
44秒前
45秒前
45秒前
huangy发布了新的文献求助10
47秒前
dd发布了新的文献求助10
48秒前
Marshall完成签到 ,获得积分10
50秒前
xiaoxiong完成签到,获得积分10
54秒前
研友_Zzy1pn完成签到,获得积分10
56秒前
dd完成签到,获得积分10
56秒前
56秒前
sunshihaoya完成签到,获得积分10
59秒前
xiaoxiong发布了新的文献求助10
1分钟前
1分钟前
susu发布了新的文献求助10
1分钟前
chaotianjiao完成签到 ,获得积分10
1分钟前
1分钟前
传奇3应助Asher采纳,获得10
1分钟前
Jay发布了新的文献求助10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976600
求助须知:如何正确求助?哪些是违规求助? 3520689
关于积分的说明 11204470
捐赠科研通 3257316
什么是DOI,文献DOI怎么找? 1798683
邀请新用户注册赠送积分活动 877881
科研通“疑难数据库(出版商)”最低求助积分说明 806613