Estimating subsurface geostatistical parameters from surface-based GPR reflection data using a deep-learning approach

探地雷达 计算机科学 深度学习 人工智能 克里金 合成数据 背景(考古学) 反演(地质) 人工神经网络 反射(计算机编程) 航程(航空) 机器学习 蒙特卡罗方法 偏移量(计算机科学) 地质学 雷达 工程类 数学 构造盆地 航空航天工程 古生物学 统计 电信 程序设计语言
作者
Lie Yu,James Irving,Klaus Holliger
标识
DOI:10.1190/image2023-3910415.1
摘要

PreviousNext No AccessThird International Meeting for Applied Geoscience & Energy Expanded AbstractsEstimating subsurface geostatistical parameters from surface-based GPR reflection data using a deep-learning approachAuthors: Yu LiuJames IrvingKlaus HolligerYu LiuUniversity of LausanneSearch for more papers by this author, James IrvingUniversity of LausanneSearch for more papers by this author, and Klaus HolligerUniversity of LausanneSearch for more papers by this authorhttps://doi.org/10.1190/image2023-3910415.1 SectionsAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InReddit AbstractThe estimation of subsurface geostatistical parameters from surface-based common-offset GPR reflection data has so far relied upon a Monte-Carlo-type inversion approach. This allows for a comprehensive exploration of the parameter space and provides some measure of uncertainty with regard to the inferred results. However, the associated computational costs are inherently high. To alleviate this problem, we present an alternative deep-learning-based technique, which, once trained in a supervised context, allows us to perform the same task in a highly efficient manner. The proposed approach uses a convolutional neural network (CNN), which is trained on a vast database of autocorrelations obtained from synthetic GPR images for a comprehensive range of stochastic subsurface models. An important aspect of the training process is that it the synthetic GPR data are generated using a computationally efficient approximate solution of the underlying physical problem. The allows circumventing the notorious problem associated with the lack of training data, which often hampers the routine application of deep-learning-based techniques in applied geophysics. Tests on a wide range of realistic synthetic GPR data generated using a finite-difference time-domain (FDTD) solution of Maxwell’s equations as well as a comparison with the traditional Monte Carlo approach on a pertinent field dataset confirm the viability of the proposed method, even in the presence of high noise levels.Keywords: GPR, shallow subsurface, heterogeneity, geostatistics, deep learningPermalink: https://doi.org/10.1190/image2023-3910415.1FiguresReferencesRelatedDetails Third International Meeting for Applied Geoscience & Energy Expanded Abstracts ISSN (print):1052-3812 ISSN (online):1949-4645 Copyright: 2023 Pages: 1812 publication data© 2023 Published in electronic format with permission by the Society of Exploration Geophysicists and the American Association of Petroleum GeologistsPublisher:Society of Exploration Geophysicists HistoryPublished Online: 14 Dec 2023 CITATION INFORMATION Yu Liu, James Irving, and Klaus Holliger, (2023), "Estimating subsurface geostatistical parameters from surface-based GPR reflection data using a deep-learning approach," SEG Technical Program Expanded Abstracts : 1174-1178. https://doi.org/10.1190/image2023-3910415.1 Plain-Language Summary KeywordsGPRshallow subsurfaceheterogeneitygeostatisticsdeep learningPDF DownloadLoading ...
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小潘完成签到 ,获得积分10
2秒前
天天天才完成签到,获得积分10
3秒前
完美世界应助able采纳,获得10
4秒前
辛苦科研人完成签到 ,获得积分10
5秒前
慕青应助xiaowan采纳,获得10
7秒前
魏凡之完成签到 ,获得积分10
8秒前
11秒前
12秒前
fuguier发布了新的文献求助10
13秒前
15秒前
zsk1122完成签到,获得积分10
17秒前
荔枝发布了新的文献求助10
17秒前
lyy完成签到 ,获得积分10
18秒前
21秒前
myuniv完成签到,获得积分10
21秒前
专注鸵鸟完成签到,获得积分10
21秒前
专注之双完成签到,获得积分10
22秒前
Zircon完成签到 ,获得积分10
23秒前
Much完成签到 ,获得积分10
24秒前
24秒前
充电宝应助颠覆乾坤采纳,获得10
25秒前
26秒前
无花果应助pz采纳,获得10
26秒前
zheng完成签到 ,获得积分10
28秒前
量子星尘发布了新的文献求助10
29秒前
星辰大海应助荔枝采纳,获得10
29秒前
LJL发布了新的文献求助10
30秒前
meng发布了新的文献求助10
30秒前
无私的颤完成签到,获得积分10
30秒前
lucky完成签到 ,获得积分10
31秒前
Zel博博完成签到,获得积分10
31秒前
谷粱诗云完成签到,获得积分10
31秒前
yar应助myuniv采纳,获得10
31秒前
xc完成签到 ,获得积分10
32秒前
32秒前
干净的天与完成签到,获得积分10
32秒前
哈基米德应助毅诚菌采纳,获得10
34秒前
铁甲小杨完成签到,获得积分0
34秒前
35秒前
卡机了完成签到,获得积分10
36秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022