Ultra-dense Motion Capture: An exploratory full-automatic approach for dense tracking of breast motion in 4D

计算机科学 运动捕捉 人工智能 计算机视觉 地标 匹配移动 运动分析 多边形网格 运动(物理) 模式识别(心理学) 计算机图形学(图像)
作者
Qilong Liu,Kit‐Lun Yick,Yue Sun,Joanne Yip
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (2): e0299040-e0299040
标识
DOI:10.1371/journal.pone.0299040
摘要

Understanding the dynamic deformation pattern and biomechanical properties of breasts is crucial in various fields, including designing ergonomic bras and customized prostheses, as well as in clinical practice. Previous studies have recorded and analyzed the dynamic behaviors of the breast surface using 4D scanning, which provides a sequence of 3D meshes during movement with high spatial and temporal resolutions. However, these studies are limited by the lack of robust and automated data processing methods which result in limited data coverage or error-prone analysis results. To address this issue, we identify revealing inter-frame dense correspondence as the core challenge towards conducting reliable and consistent analysis of the 4D scanning data. We proposed a fully-automatic approach named Ulta-dense Motion Capture (UdMC) using Thin-plate Spline (TPS) to augment the sparse landmarks recorded via motion capture (MoCap) as initial dense correspondence and then rectified it with a sophisticated post-alignment scheme. Two downstream tasks are demonstrated to validate its applicability: virtual landmark tracking and deformation intensity analysis. For evaluation, a dynamic 4D human breast anthropometric dataset DynaBreastLite was constructed. The results show that our approach can robustly capture the dynamic deformation characteristics of the breast surfaces, significantly outperforms baselines adapted from previous works in terms of accuracy, consistency, and efficiency. For 10 fps dataset, average error of 0.25 cm on control-landmarks and 0.33 cm on non-control (arbitrary) landmarks were achieved, with 17-70 times faster computation time. Evaluation was also carried out on 60 fps and 120 fps datasets, with consistent and large performance gaining being observed. The proposed method may contribute to advancing research in breast anthropometry, biomechanics, and ergonomics by enabling more accurate tracking of the breast surface deformation patterns and dynamic characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助嗨哈尼采纳,获得10
1秒前
bofu发布了新的文献求助10
1秒前
纪鹏飞完成签到,获得积分10
1秒前
XTM驳回了Renee应助
2秒前
lxy关闭了lxy文献求助
2秒前
yah发布了新的文献求助10
2秒前
3秒前
LI完成签到,获得积分10
4秒前
瘦瘦达完成签到,获得积分10
7秒前
bofu发布了新的文献求助10
7秒前
研友_VZG7GZ应助猫不吃狗粮采纳,获得10
8秒前
东方捕完成签到,获得积分10
10秒前
16秒前
仁爱的伯云完成签到,获得积分10
16秒前
研友_VZG7GZ应助陈隆采纳,获得10
18秒前
関电脑完成签到,获得积分10
18秒前
领导范儿应助漂泊1991采纳,获得10
20秒前
20秒前
周周发布了新的文献求助10
21秒前
22秒前
传奇3应助sy采纳,获得10
23秒前
bianting发布了新的文献求助10
23秒前
美好丹妗完成签到,获得积分10
24秒前
852应助lxy采纳,获得10
25秒前
任小九发布了新的文献求助10
26秒前
追寻不平发布了新的文献求助10
27秒前
28秒前
lishui完成签到 ,获得积分10
28秒前
李想完成签到,获得积分10
28秒前
baiyi2024发布了新的文献求助10
30秒前
大个应助123456采纳,获得10
31秒前
嗨哈尼发布了新的文献求助10
32秒前
kkk发布了新的文献求助20
32秒前
SharonDu发布了新的文献求助20
32秒前
干净冰双关注了科研通微信公众号
33秒前
八年荒发布了新的文献求助10
34秒前
今后应助贪玩绮南采纳,获得10
36秒前
雨柏完成签到 ,获得积分10
36秒前
研友_VZG7GZ应助追寻不平采纳,获得10
37秒前
38秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160995
求助须知:如何正确求助?哪些是违规求助? 2812220
关于积分的说明 7894949
捐赠科研通 2471119
什么是DOI,文献DOI怎么找? 1315906
科研通“疑难数据库(出版商)”最低求助积分说明 631069
版权声明 602086