Integration method of compressed sensing with variational mode decomposition based on gray wolf optimization and its denoising effect in mud pulse signal

降噪 信号(编程语言) 压缩传感 噪音(视频) 干扰(通信) 计算机科学 算法 人工智能 电信 图像(数学) 频道(广播) 程序设计语言
作者
Zhidan Yan,Lin Jiao,Hehui Sun,Ruirui Sun,J. Zhang
出处
期刊:Review of Scientific Instruments [American Institute of Physics]
卷期号:95 (2)
标识
DOI:10.1063/5.0188710
摘要

The continuous wave mud pulse transmission holds great promise for the future of downhole data communication. However, significant noise interference during the transmission process poses a formidable challenge for decoding. In particular, effectively eliminating random noise with a substantial amplitude that overlaps with the pulse signal spectrum has long been a complex issue. To address this, an enhanced integration algorithm that merges variational mode decomposition (VMD) and compressed sensing (CS) to suppress high-intensity random noise is proposed in this paper. In response to the inadequacy of manually preset parameters in VMD, which often leads to suboptimal decomposition outcomes, the gray wolf optimization algorithm is designed to obtain the optimal penalty factor and decomposition mode number in VMD. Subsequently, the optimized parameter combination decomposes the signal into a series of intrinsic modes. The mode exhibiting a stronger correlation with the original signal is retained to enhance signal sparsity, thereby fulfilling the prerequisite for compressed sensing. The signal is then observed and reconstructed using the compressed sensing method to yield the final signal. The proposed algorithm has been compared with VMD, CS, and CEEMD; the results demonstrate that the method can enhance the signal-noise ratio by up to ∼20.55 dB. Furthermore, it yields higher correlation coefficients and smaller mean square errors. Moreover, the experimental results using real field data show that the useful pulse waveforms can be recognized effectively, assisting surface workers in acquiring precise downhole information, enhancing drilling efficiency, and significantly reducing the risk of engineering accidents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助Sinner采纳,获得10
刚刚
Lobectomy发布了新的文献求助10
刚刚
刚刚
夕赣完成签到 ,获得积分10
1秒前
甜甜玫瑰应助土豆采纳,获得10
1秒前
2秒前
朱小小完成签到,获得积分10
3秒前
4秒前
5秒前
Hello应助zixi采纳,获得10
6秒前
徐裘完成签到,获得积分10
6秒前
科研通AI2S应助yang采纳,获得10
6秒前
7秒前
8秒前
8秒前
我的学习发布了新的文献求助10
9秒前
LARS发布了新的文献求助10
11秒前
--发布了新的文献求助10
11秒前
11秒前
昌昌昌发布了新的文献求助10
11秒前
zou完成签到 ,获得积分20
12秒前
12秒前
冰河的羊发布了新的文献求助10
13秒前
13秒前
xiaozheng完成签到,获得积分10
13秒前
魔幻的又亦完成签到,获得积分20
13秒前
mengxue完成签到,获得积分10
13秒前
14秒前
14秒前
why完成签到,获得积分10
14秒前
所所应助liu采纳,获得10
15秒前
承宣完成签到 ,获得积分10
15秒前
咸鸭蛋完成签到,获得积分10
15秒前
15秒前
XiaoDai完成签到 ,获得积分10
15秒前
16秒前
加油发布了新的文献求助10
17秒前
123456完成签到,获得积分10
17秒前
18秒前
小闫发布了新的文献求助10
18秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158017
求助须知:如何正确求助?哪些是违规求助? 2809393
关于积分的说明 7881798
捐赠科研通 2467878
什么是DOI,文献DOI怎么找? 1313757
科研通“疑难数据库(出版商)”最低求助积分说明 630522
版权声明 601943