Integration method of compressed sensing with variational mode decomposition based on gray wolf optimization and its denoising effect in mud pulse signal

降噪 信号(编程语言) 压缩传感 噪音(视频) 干扰(通信) 计算机科学 算法 人工智能 电信 图像(数学) 频道(广播) 程序设计语言
作者
Zhidan Yan,Lin Jiao,Hehui Sun,Ruirui Sun,J. Zhang
出处
期刊:Review of Scientific Instruments [American Institute of Physics]
卷期号:95 (2)
标识
DOI:10.1063/5.0188710
摘要

The continuous wave mud pulse transmission holds great promise for the future of downhole data communication. However, significant noise interference during the transmission process poses a formidable challenge for decoding. In particular, effectively eliminating random noise with a substantial amplitude that overlaps with the pulse signal spectrum has long been a complex issue. To address this, an enhanced integration algorithm that merges variational mode decomposition (VMD) and compressed sensing (CS) to suppress high-intensity random noise is proposed in this paper. In response to the inadequacy of manually preset parameters in VMD, which often leads to suboptimal decomposition outcomes, the gray wolf optimization algorithm is designed to obtain the optimal penalty factor and decomposition mode number in VMD. Subsequently, the optimized parameter combination decomposes the signal into a series of intrinsic modes. The mode exhibiting a stronger correlation with the original signal is retained to enhance signal sparsity, thereby fulfilling the prerequisite for compressed sensing. The signal is then observed and reconstructed using the compressed sensing method to yield the final signal. The proposed algorithm has been compared with VMD, CS, and CEEMD; the results demonstrate that the method can enhance the signal-noise ratio by up to ∼20.55 dB. Furthermore, it yields higher correlation coefficients and smaller mean square errors. Moreover, the experimental results using real field data show that the useful pulse waveforms can be recognized effectively, assisting surface workers in acquiring precise downhole information, enhancing drilling efficiency, and significantly reducing the risk of engineering accidents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dzvd完成签到,获得积分10
刚刚
刚刚
子健完成签到,获得积分10
刚刚
神勇的向薇完成签到,获得积分10
刚刚
搜集达人应助健忘症采纳,获得10
1秒前
1秒前
wanci应助tt采纳,获得10
2秒前
liuerlong完成签到 ,获得积分10
2秒前
笨笨熊发布了新的文献求助10
3秒前
NexusExplorer应助研友_rLmNXn采纳,获得10
3秒前
上官若男应助pp采纳,获得10
3秒前
ding应助明天会更美好采纳,获得30
3秒前
qcck完成签到,获得积分10
3秒前
321发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
starfish发布了新的文献求助10
4秒前
5秒前
所所应助乔烨磊采纳,获得10
6秒前
6秒前
慕青应助小叶子采纳,获得10
7秒前
Bio应助克林沙星采纳,获得50
7秒前
我是老大应助皮皮采纳,获得10
7秒前
shine发布了新的文献求助30
7秒前
8秒前
doudou完成签到,获得积分10
8秒前
搜集达人应助cjh采纳,获得10
9秒前
LCC发布了新的文献求助10
9秒前
hzx发布了新的文献求助10
9秒前
七兮发布了新的文献求助20
10秒前
CC发布了新的文献求助10
11秒前
自觉南风发布了新的文献求助10
11秒前
Banbor2021完成签到,获得积分10
11秒前
11秒前
道元完成签到,获得积分10
11秒前
321完成签到,获得积分10
12秒前
舒服的曼云完成签到,获得积分10
12秒前
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016344
求助须知:如何正确求助?哪些是违规求助? 3556478
关于积分的说明 11321199
捐赠科研通 3289279
什么是DOI,文献DOI怎么找? 1812421
邀请新用户注册赠送积分活动 887952
科研通“疑难数据库(出版商)”最低求助积分说明 812060