亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Integration method of compressed sensing with variational mode decomposition based on gray wolf optimization and its denoising effect in mud pulse signal

降噪 信号(编程语言) 压缩传感 噪音(视频) 干扰(通信) 计算机科学 算法 人工智能 电信 图像(数学) 频道(广播) 程序设计语言
作者
Zhidan Yan,Lin Jiao,Hehui Sun,Ruirui Sun,J. Zhang
出处
期刊:Review of Scientific Instruments [American Institute of Physics]
卷期号:95 (2)
标识
DOI:10.1063/5.0188710
摘要

The continuous wave mud pulse transmission holds great promise for the future of downhole data communication. However, significant noise interference during the transmission process poses a formidable challenge for decoding. In particular, effectively eliminating random noise with a substantial amplitude that overlaps with the pulse signal spectrum has long been a complex issue. To address this, an enhanced integration algorithm that merges variational mode decomposition (VMD) and compressed sensing (CS) to suppress high-intensity random noise is proposed in this paper. In response to the inadequacy of manually preset parameters in VMD, which often leads to suboptimal decomposition outcomes, the gray wolf optimization algorithm is designed to obtain the optimal penalty factor and decomposition mode number in VMD. Subsequently, the optimized parameter combination decomposes the signal into a series of intrinsic modes. The mode exhibiting a stronger correlation with the original signal is retained to enhance signal sparsity, thereby fulfilling the prerequisite for compressed sensing. The signal is then observed and reconstructed using the compressed sensing method to yield the final signal. The proposed algorithm has been compared with VMD, CS, and CEEMD; the results demonstrate that the method can enhance the signal-noise ratio by up to ∼20.55 dB. Furthermore, it yields higher correlation coefficients and smaller mean square errors. Moreover, the experimental results using real field data show that the useful pulse waveforms can be recognized effectively, assisting surface workers in acquiring precise downhole information, enhancing drilling efficiency, and significantly reducing the risk of engineering accidents.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
24秒前
老石完成签到 ,获得积分10
33秒前
41秒前
1分钟前
六六完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
小枣完成签到 ,获得积分10
3分钟前
桐桐应助科研通管家采纳,获得10
3分钟前
不安的采白完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
6分钟前
6分钟前
6分钟前
今后应助杜琦采纳,获得10
7分钟前
7分钟前
杜琦发布了新的文献求助10
7分钟前
Criminology34完成签到,获得积分0
7分钟前
大园完成签到 ,获得积分10
7分钟前
传奇3应助庾稀采纳,获得10
7分钟前
Jiayouya完成签到,获得积分10
8分钟前
liuyepiao完成签到 ,获得积分10
8分钟前
8分钟前
小鱼儿发布了新的文献求助10
8分钟前
ifast完成签到 ,获得积分10
8分钟前
彭于晏应助吴迪采纳,获得10
9分钟前
9分钟前
9分钟前
吴迪发布了新的文献求助10
9分钟前
庾稀发布了新的文献求助10
9分钟前
科研通AI2S应助Big_Show采纳,获得10
10分钟前
zjz完成签到 ,获得积分10
10分钟前
田様应助lalkiii采纳,获得10
11分钟前
11分钟前
lalkiii发布了新的文献求助10
11分钟前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Signals, Systems, and Signal Processing 880
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5845496
求助须知:如何正确求助?哪些是违规求助? 6203491
关于积分的说明 15616482
捐赠科研通 4962294
什么是DOI,文献DOI怎么找? 2675397
邀请新用户注册赠送积分活动 1620117
关于科研通互助平台的介绍 1575468