In-Situ Characterization of Stress Corrosion Crack Initiation via X-Ray Synchrotron Tomography

同步加速器 材料科学 表征(材料科学) 原位 腐蚀 压力(语言学) 断层摄影术 X射线 同步辐射 冶金 复合材料 光学 纳米技术 物理 语言学 哲学 气象学
作者
Remelisa Esteves,Quentin Fouliard,Ranajay Ghosh,Seetha Raghavan
标识
DOI:10.2514/6.2024-2048
摘要

Aluminum alloys in aerospace structures are prone to stress corrosion cracking (SCC), resulting in premature failure. Understanding the key mechanisms initiating SCC is crucial for enhancing resistance. While extensive research exists on SCC, quantifying SCC in 3D volumes is a means to attain a more comprehensive understanding of the driving factors. In-situ x-ray synchrotron tomography offers potential insights unattainable through 2D or surface-level methods, narrowing the characterization scale. This technique has been used to successfully capture SCC in novel ways through discontinuous cracking, through-thickness cracking, hydrogen bubble formation, and secondary phase formation. This has inspired the current effort here to characterize the roles of mechanical stress and hydrogen bubble formation. This study highlights crack propagation and the role of hydrogen bubbles from both mechanical and chemical perspectives, indicating their potential for assessing pre-initiation and initiation stages of SCC. Within 40 minutes, hydrogen bubbles and precipitates were captured where the crack would eventually form, indicating that hydrogen bubbles and precipitates can be used as a way to assess pre-initiation and initiation stages of SCC. By using pixel count in tomographic images as a means to measure crack growth over time, it was found that the trend was nearly logarithmic, which can be attributed to intergranular corrosion. These findings represent a first step in characterizing SCC and understanding their interplay during the initiation stages. The application of in-situ x-ray synchrotron tomography marks progress in comprehending SCC initiation. The insights gained can inform the development of corrosion control strategies and innovative methods for manufacturing SCC-resistant aluminum alloys.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
4秒前
zfy完成签到,获得积分10
4秒前
5秒前
6秒前
6秒前
6秒前
w17638619025完成签到 ,获得积分20
7秒前
撒上咖啡应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
8秒前
菠萝吹雪应助科研通管家采纳,获得30
8秒前
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
8秒前
西内!卡Q因完成签到,获得积分10
9秒前
我是125应助www采纳,获得10
9秒前
小二郎应助鲜艳的棒棒糖采纳,获得10
9秒前
Zzzzzzzzzzz发布了新的文献求助10
9秒前
长情若魔发布了新的文献求助10
9秒前
酷酷酷完成签到,获得积分10
10秒前
10秒前
BaekHyun发布了新的文献求助10
11秒前
xuex1发布了新的文献求助10
11秒前
孙皓然完成签到 ,获得积分10
12秒前
14秒前
14秒前
16秒前
逐风给逐风的求助进行了留言
17秒前
科研通AI5应助灌饼采纳,获得30
17秒前
Owen应助Zzzzzzzzzzz采纳,获得10
18秒前
19秒前
20秒前
巫马秋寒应助笑点低可乐采纳,获得10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808