An Efficient Kinematic Calibration Method for Parallel Robots With Compact Multi-Degrees-of-Freedom Joint Models

运动学 自由度(物理和化学) 机器人 接头(建筑物) 校准 并联机械手 计算机科学 机器人运动学 万向节 控制理论(社会学) 控制工程 人工智能 数学 工程类 机械工程 物理 经典力学 结构工程 移动机器人 统计 量子力学 控制(管理)
作者
Weijia Zhang,Zikang Shi,Xinxue Chai,Ye Ding
出处
期刊:Journal of Mechanisms and Robotics [ASME International]
卷期号:16 (10) 被引量:2
标识
DOI:10.1115/1.4064637
摘要

Abstract Forward kinematics-based modeling approaches are capable of constructing complete kinematic error models for parallel robots in a general way. The existing forward kinematics-based modeling methods replace multi-degrees-of-freedom (multi-DOF) joints with several 1DOF joints, allowing each limb of the parallel robot to be modeled like a serial robot. Nonetheless, this substitution complicates the kinematic model and results in additional computation. To overcome this limitation, an efficient kinematic calibration method adopting compact multi-DOF joint models is proposed. First, compact kinematic models for multi-DOF joints are established with the product of exponentials formula and adopted in the forward kinematic formulation of limbs. Error models of limbs are derived by simplifying the forward kinematic formulas' differentials, and the geometric error model for parallel robots is established by further concatenating and reformulating the limb error models. Next, the kinematic model is iteratively updated with the geometric parameter errors identified by the Levenberg–Marquardt algorithm. Error compensation is achieved through the inverse kinematics of the calibrated kinematic model. Finally, simulations and an experiment are implemented for validation. Compared with the existing forward kinematics-based modeling approaches, the error modeling procedures are simplified as the equivalent substitution of multi-DOF joints is avoided. The proposed approach also enhances the error compensation efficiency while maintaining high accuracy improvement.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自信的方盒完成签到,获得积分20
2秒前
小梦完成签到,获得积分10
2秒前
2秒前
四海亿家给四海亿家的求助进行了留言
2秒前
3秒前
完美世界应助蒲云海采纳,获得10
3秒前
5秒前
幺幺关注了科研通微信公众号
9秒前
CodeCraft应助远方采纳,获得30
10秒前
11秒前
13秒前
13秒前
14秒前
wanci应助薛定谔的猫采纳,获得10
16秒前
Tsuki发布了新的文献求助10
17秒前
18秒前
18秒前
beyonder发布了新的文献求助10
18秒前
20秒前
今生晨关注了科研通微信公众号
22秒前
现金支付发布了新的文献求助10
22秒前
23秒前
24秒前
24秒前
习习完成签到 ,获得积分10
24秒前
好大白完成签到 ,获得积分10
27秒前
自然芸发布了新的文献求助10
27秒前
852应助beyonder采纳,获得30
28秒前
上官若男应助淡定绮波采纳,获得10
28秒前
30秒前
30秒前
30秒前
思源应助Zoe采纳,获得10
31秒前
32秒前
幺幺发布了新的文献求助10
34秒前
安安发布了新的文献求助10
34秒前
丑小鸭发布了新的文献求助10
34秒前
34秒前
momo123完成签到 ,获得积分10
35秒前
hh关闭了hh文献求助
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563681
求助须知:如何正确求助?哪些是违规求助? 4648553
关于积分的说明 14685532
捐赠科研通 4590511
什么是DOI,文献DOI怎么找? 2518648
邀请新用户注册赠送积分活动 1491204
关于科研通互助平台的介绍 1462478